Energy, Год журнала: 2024, Номер unknown, С. 134097 - 134097
Опубликована: Дек. 1, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер unknown, С. 134097 - 134097
Опубликована: Дек. 1, 2024
Язык: Английский
Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115517 - 115517
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135916 - 135916
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135864 - 135864
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104840 - 104840
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Computers, Год журнала: 2025, Номер 14(4), С. 149 - 149
Опубликована: Апрель 16, 2025
In smart homes, heavy reliance on appliance automation has increased, along with the energy demand in developing urban areas, making efficient management an important factor. To address scheduling of appliances under Demand-Side Management, this article explores use heuristic-based optimization techniques (HOTs) homes (SHs) equipped renewable and sustainable resources (RSERs) storage systems (ESSs). The optimal model for minimization peak-to-average ratio (PAR), considering user comfort constraints, is validated by using different techniques, such as Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), Wind-Driven (WDO), Bacterial Foraging (BFO) Modified (GmPSO) algorithm, to minimize electricity costs, PAR, carbon emissions delay discomfort. This research investigates results three real-world scenarios. scenarios demonstrate benefits gradually assembling RSERs ESSs integrating them into SHs employing HOTs. simulation show substantial outcomes, scenario Condition 1, GmPSO decreased from 300 kg 69.23 kg, reducing 76.9%; bill prices were also cut unplanned value 400.00 cents 150 cents, a 62.5% reduction. PAR was unscheduled 4.5 2.2 which reduced 51.1%. 2 showed that 0.5 (unscheduled) 0.2, 60% reduction; costs 500.00 200.00 250.00 reduction GmPSO. 3, where batteries integrated, algorithm emission 158.3 208.3 24%. cost 500 GmPSO, decreasing overall 40%. achieved 57.1% 2.8 1.2.
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112760 - 112760
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Water Research, Год журнала: 2024, Номер 266, С. 122337 - 122337
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
3Symmetry, Год журнала: 2024, Номер 16(8), С. 977 - 977
Опубликована: Авг. 1, 2024
The accurate prediction of urban road collapses is paramount importance for public safety and infrastructure management. However, the complex variable nature subsidence mechanisms, coupled with inherent noise non-stationarity in data, poses significant challenges to development precise real-time models. To address these challenges, this paper develops an Adaptive Difference Least Squares Support Vector Regression (AD-LSSVR) model. AD-LSSVR model employs a difference transformation process input output effectively reducing enhancing stability. This extracts trends features from leveraging symmetrical characteristics within it. Additionally, parameters were optimized using grid search cross-validation techniques, which systematically explore parameter space evaluate performance multiple subsets ensuring both precision generalizability selected parameters. Moreover, sliding window method was employed data sparsity anomalies, robustness adaptability experimental results demonstrate superior predicting collapse timing, highlighting its effectiveness handling nonlinear data.
Язык: Английский
Процитировано
1Heliyon, Год журнала: 2024, Номер 10(19), С. e38233 - e38233
Опубликована: Сен. 21, 2024
Язык: Английский
Процитировано
1Building Simulation, Год журнала: 2024, Номер unknown
Опубликована: Сен. 10, 2024
Язык: Английский
Процитировано
0