Nuclear Engineering and Design, Год журнала: 2025, Номер 438, С. 114013 - 114013
Опубликована: Апрель 8, 2025
Язык: Английский
Nuclear Engineering and Design, Год журнала: 2025, Номер 438, С. 114013 - 114013
Опубликована: Апрель 8, 2025
Язык: Английский
Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 105942 - 105942
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
4International Journal of Hydrogen Energy, Год журнала: 2025, Номер 120, С. 486 - 496
Опубликована: Март 29, 2025
Язык: Английский
Процитировано
4Applied Sciences, Год журнала: 2025, Номер 15(7), С. 3758 - 3758
Опубликована: Март 29, 2025
Wind energy represents a solution for reducing environmental impact. For this reason, research studies the elements that propose optimizing wind production through intelligent solutions. Although there are address optimization of turbine performance or other indirectly related factors in production, remains topic insufficiently explored and synthesized literature. This how machine learning (ML) techniques can be applied to optimize production. aims study systematic applications ML identify analyze key stages optimized Through research, case highlighted by which methods proposed directly target issue power process turbines. From total 1049 articles obtained from Web Science database, most studied models context artificial neural networks, with 478 papers identified. Additionally, literature identifies 224 have random forest 114 incorporated gradient boosting about power. Among these, 60 specifically addressed aspect allows identification gaps The notes previous focused on forecasting, fault detection, efficiency. existing addresses indirect component performance. Thus, paper current discusses algorithms processes, future directions increasing efficiency turbines integrated predictive methods.
Язык: Английский
Процитировано
2International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
1IET Generation Transmission & Distribution, Год журнала: 2025, Номер 19(1)
Опубликована: Янв. 1, 2025
ABSTRACT Integrating renewable energy sources into smart grids increases supply and demand management because are intermittent variable. To overcome this type of challenge, short‐term load forecasting (STLF) is essential for managing energy, demand‐side flexibility, the stability with integration. This paper presents a new model called BiGRU‐CNN to improve operation STLF in grids. The integrates bidirectional gated recurrent units (BiGRUs) temporal dependencies convolutional neural networks (CNNs) extract spatial patterns from consumption data. newly developed BiGRU captures past future contexts through processing, CNN component extracts high‐level features enhance accuracy prediction. compared two other hybrid models, CNN‐LSTM CNN‐GRU, on real‐world data American electric power (AEP) ISONE datasets. Simulation results show that proposed outperforms single‐step yielding root mean square error (RMSE) 121.43 123.57 (ISONE), absolute (MAE) 90.95 62.97 percentage (MAPE) 0.61% 0.41% (ISONE). For multi‐step forecasting, yields RMSE 680.02 581.12 MAE 481.12 411.20 MAPE 3.27% 2.91% can generate accurate reliable STLF, which useful massive energy‐integrated
Язык: Английский
Процитировано
1Energies, Год журнала: 2025, Номер 18(2), С. 355 - 355
Опубликована: Янв. 15, 2025
This paper presents the application of a proposed hybrid control strategy that is designed to enhance performance and robustness grid-connected wind energy conversion system (WECS) using Five-Phase Permanent Magnet Synchronous Generator (FP-PMSG). The approach combines second-order terminal sliding mode technique (SO-STA) with super-twisting algorithm (STA), main goal benefitting from both their advantages while addressing limitations. Indeed, sole SO-STA ensures rapid convergence robust performances in nonlinear systems, but it leads chattering reduces whole system’s efficiency. Therefore, by incorporating STA, obtained can mitigate this issue ensuring smoother actions superior dynamic response. improves adaptability fluctuations enhances against external disturbances uncertainties, leading higher reliability efficiency system. Furthermore, allows optimizing power extraction boosting WECS’s It worth clarifying that, besides control, controller used for grid side converter (GSC) DC link voltage ensure stable transfer grid. simulation results demonstrate effectiveness improving stability, robustness, studied WECS under conditions, creating promising solution renewable systems operating severe conditions.
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 11, 2025
The escalating global energy requirement, driven by population expansion and industrial development, has been met through traditional resources till now, many of which are now impending depletion. Renewable sources, specifically photovoltaic (PV) wind power, have emerged as viable sustainable options to fossil fuels. These systems praised for their reliability, scalability, cost-effectiveness, making them integral modern frameworks. However, the integration PV power electronics-based loads introduces harmonic distortions, posing critical challenges quality system stability. Addressing these concerns is imperative realizing full potential renewable in development. To meet concerns, this research proposes an ANN based DSTATCOM mitigate PV-wind systems. Traditional control appraches like "synchronous reference frame instantaneous reactive power" often create parameter valuation eficacy under uneven load scenarios. model designed using XANN approach mitigates harmonics perfectly showcase better performance even while operating non-linear loading simulated MATLAB results validated realtime setup. outcomes reflects satisfactory interms enhancing solar-wind
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2025, Номер unknown, С. 123084 - 123084
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер 324, С. 135673 - 135673
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 106369 - 106369
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0