Energy, Год журнала: 2025, Номер unknown, С. 136135 - 136135
Опубликована: Апрель 1, 2025
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 136135 - 136135
Опубликована: Апрель 1, 2025
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 135163 - 135163
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Energy, Год журнала: 2025, Номер unknown, С. 135685 - 135685
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Electronics, Год журнала: 2025, Номер 14(7), С. 1290 - 1290
Опубликована: Март 25, 2025
Accurate estimations of State-of-Charge (SOC) and State-of-Health (SOH) are crucial for ensuring the safe efficient operation lithium-ion batteries in Battery Management Systems (BMSs). This paper proposes a novel joint estimation method integrating an Autoregressive Equivalent Circuit Model (AR-ECM) with data-driven model to address strong coupling between SOC SOH. First, multi-strategy improved Ivy algorithm (MSIVY) is utilized optimize hyperparameters Hybrid Kernel Extreme Learning Machine (HKELM). Key voltage interval features, including split voltage, differential capacity, current–voltage product, extracted filtered using sliding window approach enhance SOH prediction accuracy. The estimated subsequently incorporated into AR-ECM state-space equations, where enhanced particle swarm optimization optimizes parameters. Finally, Extended Kalman Filter (EKF) applied achieve collaborative SOC–SOH estimation. Experimental results demonstrate that proposed achieves errors below 1% under 2% on public datasets, showcasing its robust generalization capability real-time performance.
Язык: Английский
Процитировано
0Journal of The Electrochemical Society, Год журнала: 2025, Номер 172(4), С. 040503 - 040503
Опубликована: Апрель 1, 2025
A hybrid model based on black-winged kite algorithm and dual-attention mechanism optimized temporal convolutional network (TCN) with simple recurrent unit (SRU) is proposed to improve the accuracy of online remaining-useful-life (RUL) prediction for Li-ion batteries (LIBs). Health indicators (HIs) correlated battery capacity are extracted from calculated variables verified Spearman correlation coefficient constructed, applying TCN multi-head self-attention capture in spatial dimension decay pattern HIs, introducing attention ability SRU timing patterns input sequences as well BKA further optimize hyper-parameters, enhancing performance. Experimental data used validate model’s predictive performance LIBs at different usage levels under complex conditions such regeneration, sharp fluctuations, plunges. The results achieve MAE less than 3.66%, MAPE below 2.02%, RMSE not exceeding 5.03%, R 2 greater 0.96, absolute error RUL 5. experimental demonstrate that can accurate perform good robustness.
Язык: Английский
Процитировано
0Structural Control and Health Monitoring, Год журнала: 2025, Номер 2025(1)
Опубликована: Янв. 1, 2025
Despite the crucial role of structural health monitoring (SHM) in ensuring integrity and safety essential infrastructure, its adoption is often limited by high costs traditional sensors. This study introduces an innovative approach for creating intelligent, high‐performing low‐cost accelerometers using a deep learning framework rooted long short–term memory (LSTM) neural networks. Initially, commercial sensors are temporarily installed alongside on bridge to facilitate training process. Once complete, removed, leaving calibrated permanently place perform continuous SHM tasks. In case study, was equipped with array six The efficacy this corroborated through comparative analysis mode shapes eigenfrequencies derived from both sensors, as well intelligent accelerometers.
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136135 - 136135
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0