A review of the numerical methods for solving the binary Allen–Cahn equation DOI
Hyun Geun Lee, Yibao Li, Junxiang Yang

и другие.

Physica A Statistical Mechanics and its Applications, Год журнала: 2025, Номер unknown, С. 130625 - 130625

Опубликована: Май 1, 2025

Язык: Английский

Linear energy-stable Runge–Kutta relaxation schemes for the Bi-flux diffusion model DOI

Jiayue Xu,

Cong Xie,

Maosheng Jiang

и другие.

Engineering Analysis with Boundary Elements, Год журнала: 2025, Номер 171, С. 106087 - 106087

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Stability analysis of a numerical method for the 3D high-order Allen–Cahn equation DOI Creative Commons

Seokjun Ham,

Jyoti,

Jaeyong Choi

и другие.

AIP Advances, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 1, 2025

The Allen–Cahn (AC) equation describes how phase separation occurs in binary alloy systems and the dynamics of interfaces between different phases. In present study, we incorporated function high order polynomial potentials standard AC stability condition for numerical scheme that is used to solve problem three-dimensional space. We a fully explicit Euler temporal derivatives second-order finite difference approach spatial discretization. However, known its speed accuracy due use small time steps, but it subject step size limitation. Here, derived validated satisfies discrete maximum principle assures scheme. Several experiments are carried out under constrained ensure method, scheme, principle.

Язык: Английский

Процитировано

0

A review of the numerical methods for solving the binary Allen–Cahn equation DOI
Hyun Geun Lee, Yibao Li, Junxiang Yang

и другие.

Physica A Statistical Mechanics and its Applications, Год журнала: 2025, Номер unknown, С. 130625 - 130625

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0