A Transformer-based self-supervised learning model for fault diagnosis of air-conditioning systems with limited labeled data DOI

Hua Mei,

Ke Yan, Xin Li

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110331 - 110331

Опубликована: Фев. 20, 2025

Язык: Английский

Imbalanced data based fault diagnosis of the chiller via integrating a new resampling technique with an improved ensemble extreme learning machine DOI
Hanyuan Zhang,

Wenxin Yang,

Weilin Yi

и другие.

Journal of Building Engineering, Год журнала: 2023, Номер 70, С. 106338 - 106338

Опубликована: Март 21, 2023

Язык: Английский

Процитировано

45

AI in HVAC fault detection and diagnosis: A systematic review DOI Creative Commons
Jian Bi,

Hua Wang,

Enbo Yan

и другие.

Energy Reviews, Год журнала: 2024, Номер 3(2), С. 100071 - 100071

Опубликована: Фев. 9, 2024

Recent studies show that artificial intelligence (AI), such as machine learning and deep learning, models can be adopted have advantages in fault detection diagnosis for building energy systems. This paper aims to conduct a comprehensive systematic literature review on (FDD) methods heating, ventilation, air conditioning (HVAC) covers the period from 2013 2023 identify analyze existing research this field. Our work concentrates explicitly synthesizing AI-based FDD techniques, particularly summarizing these offering classification. First, we discuss challenges while developing HVAC Next, classify into three categories: those based traditional hybrid AI models. Additionally, also examine physical model-based compare them with methods. The analysis concludes FDD, despite its higher accuracy reduced reliance expert knowledge, has garnered considerable interest compared physics-based However, it still encounters difficulties dynamic time-varying environments achieving resolution. Addressing is essential facilitate widespread adoption of HVAC.

Язык: Английский

Процитировано

26

A new chiller fault diagnosis method under the imbalanced data environment via combining an improved generative adversarial network with an enhanced deep extreme learning machine DOI

Wenxin Yang,

Hanyuan Zhang,

Jit Bing Lim

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109218 - 109218

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

20

Attention on the key modes: Machinery fault diagnosis transformers through variational mode decomposition DOI

Hebin Liu,

Qizhi Xu,

Xiaolin Han

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 289, С. 111479 - 111479

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

17

Double AMIS-ensemble deep learning for skin cancer classification DOI
Kanchana Sethanan, Rapeepan Pitakaso,

Thanatkit Srichok

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 234, С. 121047 - 121047

Опубликована: Июль 28, 2023

Язык: Английский

Процитировано

35

Novel imbalanced fault diagnosis method based on generative adversarial networks with balancing serial CNN and Transformer (BCTGAN) DOI
Hualin Chen, Jianan Wei, Haisong Huang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 258, С. 125171 - 125171

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

13

Fault diagnosis of HVAC system with imbalanced data using multi-scale convolution composite neural network DOI

Rouhui Wu,

Yizhu Ren, Mengying Tan

и другие.

Building Simulation, Год журнала: 2024, Номер 17(3), С. 371 - 386

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

11

Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach DOI
Mohd Herwan Sulaiman, Zuriani Mustaffa

Energy, Год журнала: 2024, Номер 297, С. 131159 - 131159

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

10

End-to-end residual learning embedded ACWGAN for AHU FDD with limited fault data DOI
Jian Bi, Ke Yan, Yang Du

и другие.

Building and Environment, Год журнала: 2025, Номер 270, С. 112529 - 112529

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

1

Generative adversarial networks driven by multi-domain information for improving the quality of generated samples in fault diagnosis DOI
Zhijun Ren, Dawei Gao, Yongsheng Zhu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 124, С. 106542 - 106542

Опубликована: Июнь 7, 2023

Язык: Английский

Процитировано

21