Journal of the Mechanics and Physics of Solids, Год журнала: 2025, Номер unknown, С. 106122 - 106122
Опубликована: Март 1, 2025
Язык: Английский
Journal of the Mechanics and Physics of Solids, Год журнала: 2025, Номер unknown, С. 106122 - 106122
Опубликована: Март 1, 2025
Язык: Английский
Journal of the Mechanics and Physics of Solids, Год журнала: 2024, Номер 185, С. 105570 - 105570
Опубликована: Фев. 12, 2024
Язык: Английский
Процитировано
11Computers and Geotechnics, Год журнала: 2025, Номер 181, С. 107110 - 107110
Опубликована: Фев. 5, 2025
Язык: Английский
Процитировано
1Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 134, С. 108692 - 108692
Опубликована: Май 31, 2024
Язык: Английский
Процитировано
8Composite Structures, Год журнала: 2024, Номер 348, С. 118514 - 118514
Опубликована: Авг. 23, 2024
Язык: Английский
Процитировано
7Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107453 - 107453
Опубликована: Ноя. 17, 2023
Язык: Английский
Процитировано
17Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107483 - 107483
Опубликована: Ноя. 18, 2023
In this paper, we present two novel physics-infused neural network (NN) architectures that satisfy various invariance conditions for constructing efficient and robust Deep Learning (DL)-based sub-grid scale (SGS) turbulence models use in Large Eddy Simulation (LES) procedures widely used fluid engineering applications. The first architecture, called tensor basis networks (TBNN), recently proposed the context of Reynolds-averaged Navier–Stokes (RANS) modeling, introduced herein SGS modeling wall-bounded turbulence, embeds analytical expansion stresses into integrity tensors composed symmetric anti-symmetric parts resolved velocity gradient tensor, thus incorporating Galilean, rotational reflectional invariances. our second approach, a relatively simple yet powerful Galilean Invariance embedded Neural Network (GINN) incorporates invariance, takes as inputs independent components addition to invariant single input layer. Explicit filtering data from direct simulations canonical channel flow at friction Reynolds numbers Reτ≈395 590 provided accurate training testing these models. Both sets are predict feature datasets generated with different filter widths, numbers. GINN model yields less prediction error on test (mean squared ∼0.4) compared TBNN ∼0.5). Upon comparison, it is revealed has better extraction capacity owing its ability establish relations between extract information cross-components stresses. Based their predictive performance, both have shown great promise posteriori actual LESs. work illustrates significance physics infusion well embedding NN architecture DL-based turbulent achieving superior efficacy.
Язык: Английский
Процитировано
13International Journal of Applied Mechanics, Год журнала: 2024, Номер 16(05)
Опубликована: Апрель 9, 2024
The accurate identification of constitutive parameters is considered the key challenge for study mechanical properties biological soft tissues. popular machine learning (ML)-based inverse frameworks always require large amounts training datasets. This work proposes an ML framework called self-optimized identifying aortic walls under few datasets conditions. includes three steps: Step 1: forward physical FEM models first simulate nonlinear deformation subject to uniaxial tension tests and are used establish relationship datasets, 2: carefully designed random forest (RF) model can offer rapid by established 3: recalled evaluate error between results in 2 real values, then accuracy embedded into RF guiding optimization directions ensure that final accurately physically reasonable. robustness validation proposed was conducted experiment samples bovine walls. approach achieves R-squared exceeding 96.90% longitudinal direction 98.30% circumferential direction, which better than directly gradient-based same respectively. comparison show not only achieve walls, but also decrease dependency initial number sampling data effectively. developed herein provides a common convenient
Язык: Английский
Процитировано
4Applied Computational Intelligence and Soft Computing, Год журнала: 2024, Номер 2024(1)
Опубликована: Янв. 1, 2024
The nonlinear sine‐Gordon equation is a prevalent feature in numerous scientific and engineering problems. In this paper, we propose machine learning‐based approach, physics‐informed neural networks (PINNs), to investigate explore the solution of generalized non‐linear equation, encompassing Dirichlet Neumann boundary conditions. To incorporate physical information for multiobjective loss function has been defined consisting residual governing partial differential (PDE), initial conditions, various Using multiple densely connected independent artificial (ANNs), called feedforward deep designed handle equations, PINNs have trained through automatic differentiation minimize that incorporates given PDE governs laws phenomena. illustrate effectiveness, validity, practical implications our proposed two computational examples from are presented. We developed PINN algorithm implemented it using Python software. Various experiments were conducted determine an optimal architecture. network training was employed by current state‐of‐the‐art optimization methods learning known as Adam L‐BFGS‐B minimization techniques. Additionally, solutions method compared with established analytical found literature. findings show approach accurate efficient solving equations variety conditions well any complex problems across disciplines.
Язык: Английский
Процитировано
4IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2024, Номер 62, С. 1 - 13
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
4Engineering Structures, Год журнала: 2023, Номер 301, С. 117235 - 117235
Опубликована: Дек. 14, 2023
Язык: Английский
Процитировано
9