Information Sciences, Год журнала: 2023, Номер 648, С. 119623 - 119623
Опубликована: Авг. 31, 2023
Язык: Английский
Information Sciences, Год журнала: 2023, Номер 648, С. 119623 - 119623
Опубликована: Авг. 31, 2023
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104158 - 104158
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2023, Номер 353, С. 122169 - 122169
Опубликована: Ноя. 6, 2023
Язык: Английский
Процитировано
22Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 132, С. 107906 - 107906
Опубликована: Янв. 28, 2024
Язык: Английский
Процитировано
6Electric Power Components and Systems, Год журнала: 2024, Номер 52(11), С. 1998 - 2007
Опубликована: Март 4, 2024
The demand for electrical energy is continuously increasing in these days, particularly due to advancements the industrial sector. This surge has underscored importance of seeking alternative sources, with solar emerging as a standout option its low investment costs and environmental friendliness. However, variability photovoltaic power production, influenced by meteorological data, necessitates accurate prediction methods. To enhance precision predictions, incorporating new parameters alongside existing data advantageous. In this regard, study explores impact particulate matter (PM10) parameter on using artificial neural network (ANN) model JAYA-ANN. Comparing results based root mean squared absolute percentage errors reveals that hybrid JAYA-ANN consistently outperforms ANN persistence models. Notably, PM10 proves be significant input forecasting daily power.
Язык: Английский
Процитировано
6Electronics, Год журнала: 2024, Номер 13(11), С. 2071 - 2071
Опубликована: Май 27, 2024
We present SolarFlux Predictor, a novel deep-learning model designed to revolutionize photovoltaic (PV) power forecasting in South Korea. This uses self-attention-based temporal convolutional network (TCN) process and predict PV outputs with high precision. perform meticulous data preprocessing ensure accurate normalization outlier rectification, which are vital for reliable analysis. The TCN layers crucial capturing patterns energy data; we complement them the teacher forcing technique during training phase significantly enhance sequence prediction accuracy. By optimizing hyperparameters Optuna, further improve model’s performance. Our incorporates multi-head self-attention mechanisms focus on most impactful features, thereby improving In validations against datasets from nine regions Korea, outperformed conventional methods. results indicate that is robust tool systems’ management operational efficiency can contribute Korea’s pursuit of sustainable solutions.
Язык: Английский
Процитировано
6Energy, Год журнала: 2024, Номер 299, С. 131479 - 131479
Опубликована: Апрель 29, 2024
Язык: Английский
Процитировано
5Textile Research Journal, Год журнала: 2024, Номер 94(15-16), С. 1771 - 1785
Опубликована: Март 15, 2024
When deep learning is applied to intelligent textile defect detection, the insufficient training data may result in low accuracy and poor adaptability of varying types trained model. To address above problem, an enhanced generative adversarial network for augmentation improved fabric detection was proposed. Firstly, dataset preprocessed generate localization maps, which are combined with non-defective images input into training, helps better extract features. In addition, by utilizing a Double U-Net network, fusion defects textures enhanced. Next, random noise multi-head attention mechanism introduced improve model’s generalization ability enhance realism diversity generated images. Finally, we merge newly image original realize enhancement. Comparison experiments were performed using YOLOv3 object model on before after The experimental results show significant improvement five – float, line, knot, hole, stain increasing from 41%, 44%, 38%, 42%, 41% 78%, 76%, 72%, 67%, 64%, respectively.
Язык: Английский
Процитировано
4Applied Energy, Год журнала: 2024, Номер 377, С. 124717 - 124717
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
4Journal of Renewable and Sustainable Energy, Год журнала: 2025, Номер 17(1)
Опубликована: Янв. 1, 2025
In recent years, integration of sustainable energy sources into power grids has significantly increased data influx, presenting opportunities and challenges for system management. The intermittent nature photovoltaic output, coupled with stochastic charging patterns high demands electric vehicles, places considerable strain on resources. Consequently, short-term forecasting output vehicle load becomes crucial to ensuring stability enhancing unit commitment economic dispatch. trends transition accumulate vast through sensors, wireless transmission, network communication, cloud computing technologies. This paper addresses these a comprehensive framework focused big analytics, employing Apache Spark that is developed. Datasets from Yulara solar park Palo Alto's have been utilized this research. focuses two primary aspects: generation the exploration user clustering addressed using artificial intelligence. Leveraging supervised regression unsupervised algorithms available within PySpark library enables execution visualization, analysis, trend identification methodologies both behaviors. proposed analysis offers significant insights resilience effectiveness algorithms, so enabling informed decision-making in area
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135926 - 135926
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0