Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 293, С. 130666 - 130666
Опубликована: Фев. 10, 2024
Язык: Английский
Процитировано
35Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 132, С. 107932 - 107932
Опубликована: Янв. 31, 2024
In the aftermath of natural disasters, efficient waste collection becomes a crucial challenge, owing to dynamic and unpredictable nature generation, coupled with resource constraints. This paper presents an innovative hybrid methodology that synergizes Long Short-Term Memory (LSTM) machine learning Differential Evolution (DE) optimisation augment efforts post-disaster. The approach leverages real-time data forecast generation high accuracy, facilitating development adaptable strategies. Our is designed dynamically update plans in response evolving scenarios, ensuring timely effective decision-making. Field tests conducted earthquake-prone city have demonstrated superior performance this method managing under fluctuating conditions. Moreover, in-depth sensitivity analysis helps identifying key areas for improvement. Significantly outperforming traditional models, offers substantial time savings equips disaster teams robust tool addressing challenges collection.
Язык: Английский
Процитировано
14Computers & Electrical Engineering, Год журнала: 2025, Номер 123, С. 110263 - 110263
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
1Journal of Building Engineering, Год журнала: 2024, Номер 96, С. 110423 - 110423
Опубликована: Авг. 14, 2024
Язык: Английский
Процитировано
4Energy Reports, Год журнала: 2025, Номер 13, С. 1369 - 1383
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 392, С. 125952 - 125952
Опубликована: Апрель 25, 2025
Язык: Английский
Процитировано
0IET Communications, Год журнала: 2025, Номер 19(1)
Опубликована: Янв. 1, 2025
Abstract Along with the rapid development of B5G/6G, number applications grows rapidly and data amount explodes exponentially, putting a massive burden on resource‐limited edge servers. To fully utilize limited resources, virtualization technology is introduced to provide elastic deployment for in But I/O‐intensive applications, allocating resources not as easy compute‐intensive ones, because required I/O unknown due request uncertainty. Many existing researches try solve this multi‐application problem by peaks clipping valleys filling, resource utilization. However, fact, times most hybrid deployed are similar each other, which invalidates those traditional solutions. address challenge, actual analysed complementary peak valley periods time space dimensions found. Based finding, an strategy HybridDep proposed, multiple applications. Validated simulation experiments using real datasets traces, algorithm can reduce about 3.2% cost than compared algorithm.
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110980 - 110980
Опубликована: Май 6, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2024, Номер 166, С. 112174 - 112174
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
3Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108220 - 108220
Опубликована: Март 22, 2024
Язык: Английский
Процитировано
2