Опубликована: Апрель 12, 2024
Язык: Английский
Опубликована: Апрель 12, 2024
Язык: Английский
Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(5), С. 102077 - 102077
Опубликована: Май 29, 2024
As the realities of production and operation in green intelligent workshops become more variable, adverse risks arising from disruptions to modernized workshop energy consumption schedules customer churn caused by dynamic events are increasing. In order solve those problems, we take hybrid flow shop as research subject, use buffer capacity automated guided vehicles (AGVs) transport devices resource constraints, construct a multi-objective rescheduling model that considers both satisfaction. According characteristics, an improved lion swarm optimization algorithm (ILSO) is designed above model. To improve initial solution quality global search capability algorithm, ILSO combining reverse learning initialization strategy Logistic chaotic mapping with tabu strategy. The results experiments on proposed different sizes arithmetic cases real indicate can effectively bi-objective problem oriented inserting orders, provide scheduling solutions for manufacturing enterprises achieve purpose transformation manufacturing.
Язык: Английский
Процитировано
2Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101774 - 101774
Опубликована: Ноя. 15, 2024
Язык: Английский
Процитировано
2Computers & Operations Research, Год журнала: 2024, Номер unknown, С. 106932 - 106932
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2Kybernetes, Год журнала: 2024, Номер unknown
Опубликована: Июнь 1, 2024
Purpose In situations where the crew is reduced, optimization of task allocation and sequencing (CTAS) can significantly enhance operational efficiency man-machine system by rationally distributing workload minimizing completion time. Existing related studies exhibit a limited consideration distribution involve violation precedence constraints in solution process. This study proposes CTAS method to address these issues. Design/methodology/approach The defines visual, auditory, cognitive psychomotor (VACP) load balancing objectives integrates them with minimum time ensure equitable execution efficiency, then multi-objective model for constructed. Subsequently, it designs population initialization strategy repair mechanism maintain sequence feasibility, utilizes improve non-dominated sorting genetic algorithm III (NSGA-III) solving model. Findings validated through numerical example involving mission specific type armored vehicle. results demonstrate that achieves integrating VACP balancing. Moreover, improved NSGA-III maintains feasibility thus reduces computation Originality/value achieve search optimal scheme. It provides novel perspective planners objective determination methodologies CTAS.
Язык: Английский
Процитировано
1Опубликована: Апрель 12, 2024
Язык: Английский
Процитировано
0