Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110787 - 110787
Опубликована: Дек. 1, 2024
Язык: Английский
Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110787 - 110787
Опубликована: Дек. 1, 2024
Язык: Английский
IEEE Internet of Things Journal, Год журнала: 2024, Номер 11(19), С. 31422 - 31437
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
18Measurement Science and Technology, Год журнала: 2024, Номер 35(6), С. 062002 - 062002
Опубликована: Март 19, 2024
Abstract Mechanical fault diagnosis is crucial for ensuring the normal operation of mechanical equipment. With rapid development deep learning technology, methods based on big data-driven provide a new perspective machinery. However, equipment operates in condition most time, resulting collected data being imbalanced, which affects performance diagnosis. As approach generating data, generative adversarial network (GAN) can effectively address issues limited and imbalanced practical engineering applications. This paper provides comprehensive review GAN Firstly, GAN-based diagnosis, basic theory various variants (GANs) are briefly introduced. Subsequently, GANs summarized categorized from labels models, corresponding applications outlined. Lastly, limitations current research, future challenges, trends selecting application discussed.
Язык: Английский
Процитировано
9Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123450 - 123450
Опубликована: Фев. 9, 2024
Язык: Английский
Процитировано
5Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110380 - 110380
Опубликована: Июль 26, 2024
Язык: Английский
Процитировано
5Knowledge-Based Systems, Год журнала: 2024, Номер 297, С. 111923 - 111923
Опубликована: Май 21, 2024
Язык: Английский
Процитировано
4Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 143, С. 110019 - 110019
Опубликована: Янв. 14, 2025
Язык: Английский
Процитировано
0Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 227, С. 112379 - 112379
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
0Nondestructive Testing And Evaluation, Год журнала: 2025, Номер unknown, С. 1 - 32
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
0Lubricants, Год журнала: 2025, Номер 13(3), С. 116 - 116
Опубликована: Март 7, 2025
To address the issues of negative transfer and reduced stability in learning models for rolling bearing fault diagnosis under variable working conditions, an unsupervised multi-adversarial algorithm based on dynamics simulation data is proposed. Firstly, constructs both a global domain classifier subdomain classifier. In classifier, simulated vibration signal, which contains rich label information, generated by constructing dynamic equations to replace prediction target data, thereby achieving alignment marginal conditional distributions. Simultaneously, improved loss function with embedded maximum mean discrepancy designed reduce feature distribution gap between source data. Finally, weight allocation mechanism samples developed promote positive suppress transfer. Experiments were conducted using Paderborn University dataset Huazhong Science Technology dataset, accuracy rates 89.457% 96.436%, respectively. The results show that, comparison existing cross-domain methods, proposed method demonstrates significant improvements diagnostic stability, demonstrating its superiority operational conditions.
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110512 - 110512
Опубликована: Март 12, 2025
Язык: Английский
Процитировано
0