Research on the Mechanical Parameter Identification and Controller Performance of Permanent Magnet Motors Based on Sensorless Control DOI Creative Commons

Mingchen Luan,

Yun Zhang,

Jiuhong Ruan

и другие.

Actuators, Год журнала: 2024, Номер 13(12), С. 525 - 525

Опубликована: Дек. 19, 2024

In order to improve the control performance of position sensorless system permanent magnet synchronous motors and reduce influence external uncertainties on system, such as inertia ingestion load disturbance, this paper proposes a novel algorithm for based an interleaved parallel extended sliding mode observer. Firstly, in identify time-varying moment inertia, torque viscous friction coefficient observer single-observer model is proposed, robust activator designed coupling between parameters be measured. Then, new predefined-time controller face-mounted motor using film theory, which improves response speed accuracy system. proposed are used design stability proved Lyapunov theorem. Finally, through simulation analysis experimental tests, it verified that strategy can identification parameters, time identification, tracking speed.

Язык: Английский

Comprehensive material and performance evaluation of small BLDC motors for UAV efficiency DOI Creative Commons
Ratchagaraja Dhairiyasamy,

Deepika Gabiriel

Energy Storage and Saving, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Fırçasız doğru akım motorların adaptif filtre tabanlı MRAS ile hız algılayıcısız doğrudan moment kontrolü DOI Creative Commons
Canberk Tuzcu, Engin Cemal Mengüç, Rıdvan Demir

и другие.

Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Год журнала: 2025, Номер 14(2), С. 680 - 687

Опубликована: Апрель 15, 2025

Bu çalışma, kalıcı mıknatıslı fırçasız doğru akım motoru (SMFDAM) sürücüsünde gereken rotor hızını tahmin etmek için en küçük ortalama kare (Least mean square, LMS), kurtosis (LMK) ve dördüncü fourth, LMF) yaklaşımlarına dayalı model referanslı adaptif sistem (Model reference adaptive system, MRAS) edicilerini tanıtmaktadır. Önerilen MRAS edicileri, referans modeli olarak hizmet eden ölçülen stator akımları ile modelin çıkışında üretilen arasındaki hata terimini minimize ederek doğrudan kestirmektedir. Ayrıca, kapsayan ağırlık vektörleri üç edicide de her örnekleme adımında güncellendiğinden, geleneksel çerçevelerinde yaygın kullanılan sabit kazançlı orantılı-integral bir denetleyiciye olan ihtiyacı ortadan kaldırmaktadır. edicilerin başarımları, zorlu çalışma senaryoları altında moment kontrolü (DMK) tabanlı SMFDAM sürücüsü aracılığıyla değerlendirilmiştir. Benzetim sonuçları, önerilen kestiricilerin başarımlarının birbirlerine alternatif olduğunu göstermiştir. Özellikle, hız kestiriminde LMF yapısı diğer yapılarından miktar daha iyi başarım sağlarken, 3-faz LMS LMK yapıları başarımlar sağlamıştır.

Процитировано

0

Hybrid Kalman-Sliding Mode Control For Accurate Speed Tracking Of DC Motors DOI Open Access
Sayan Basu Roy, G. Lloyds Raja

Procedia Computer Science, Год журнала: 2025, Номер 258, С. 3231 - 3240

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Machine Learning-Based Precise Monitoring of Aluminium-Magnesium Alloy Dust DOI
Fengyu Zhao, Wei Gao,

Jianxin Lu

и другие.

Journal of Loss Prevention in the Process Industries, Год журнала: 2024, Номер unknown, С. 105471 - 105471

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

Artificial Neural Network-Based Data-Driven Parameter Estimation Approach: Applications in PMDC Motors DOI Creative Commons

Faheem Ul Rehman Siddiqi,

Sadiq Ahmad, Tallha Akram

и другие.

Mathematics, Год журнала: 2024, Номер 12(21), С. 3407 - 3407

Опубликована: Окт. 31, 2024

The optimal performance of direct current (DC) motors is intrinsically linked to their mathematical models’ precision and controllers’ effectiveness. However, the limited availability motor characteristic information poses significant challenges achieving accurate modeling robust control. This study introduces an approach employing artificial neural networks (ANNs) estimate critical DC parameters by defining practical constraints that simplify estimation process. A model was introduced for parameter estimation, two advanced learning algorithms were proposed efficiently train ANN. thoroughly analyzed using metrics such as mean squared error, epoch count, execution time ensure reliability dynamic priority arbitration data integrity. Dynamic involves automatically assigning tasks in real-time depending on relevance smooth operations, whereas integrity ensures remains accurate, consistent, reliable throughout entire ANN-based estimator successfully predicts electromechanical electrical characteristics, back-EMF, moment inertia, viscous friction coefficient, armature inductance, resistance. Compared conventional methods, which are often resource-intensive time-consuming, solution offers superior accuracy, significantly reduced time, lower computational costs. simulation results validated effectiveness ANN under diverse real-world operating conditions, making it a powerful tool enhancing with applications industrial automation control systems.

Язык: Английский

Процитировано

1

An Improved Model Predictive Current Control of BLDC Motor With a Novel Adaptive Extended Kalman Filter–Based Back EMF Estimator and a New Commutation Duration Approach for Electrical Vehicle DOI Creative Commons
Remzi İnan

International Journal of Circuit Theory and Applications, Год журнала: 2024, Номер unknown

Опубликована: Дек. 23, 2024

ABSTRACT As a result of the increasing use electric vehicles, ensuring high‐performance speed and torque control brushless direct current (BLDC) motors has become great importance for energy efficiency. In order to prevent ripple finite set model predictive (FCS‐MPCC), commutation moments are detected by Hall effect sensors in conventional methods. However, this method cannot exhibit long‐life structure because physical strain damaging electrical connections. study, durations captured determined with new approach. Commutation zero crossing detectors using position information obtained from encoder. Moreover, three‐phase back electromotive forces (EMFs) BLDC motor applied FCS‐MPCC predict stator phase currents estimated novel adaptive extended Kalman filter (AEKF) which estimation capability without any sensor. Furthermore, another improvement is implemented calculation cost function taking into account difference between predicted reference different MPCC The proposed drive system tested under scenarios at various speeds load torque, resistance, leakage inductance variations simulation. It proven simulation results that commutations can be achieved stably determination method. addition, show AEKF estimator calculated regarding not only error but also moment have impressive prediction performance, respectively.

Язык: Английский

Процитировано

1

The rise of the polarimetric Kalman filter: a bibliometric study on its growing significance DOI
Khaled Obaideen, Mohammad Al‐Shabi, S. Andrew Gadsden

и другие.

Опубликована: Апрель 19, 2024

Язык: Английский

Процитировано

0

The Kalman filter's role in optimizing fluorescence analysis DOI
Khaled Obaideen,

Yousuf Faroukh,

Mohammad Al‐Shabi

и другие.

Опубликована: Июнь 7, 2024

This paper investigates the integration of Kalman filter with fluorescence analysis in biomedical imaging, a synergy that holds promise advancing diagnostic accuracy and enhancing research methodologies study biological systems. Employing rigorous bibliometric through VOSviewer, we explore key trends, influential clusters, seminal publications have marked evolution this interdisciplinary field. The filter, renowned for its predictive capabilities real-time signal processing, emerges as crucial tool improving signal-to- noise ratio thereby facilitating extraction more accurate meaningful data from complex phenomena. Our reveals dynamic growing landscape, where methodological advancements computational challenges intersect practical applications imaging. By highlighting significant contributions identifying areas ripe future investigation, underscores potential filter-enhanced to revolutionize diagnostics offering new insights into cellular molecular processes. Through synthesis, aim provide comprehensive overview current state art chart course next wave innovations

Язык: Английский

Процитировано

0

Dynamic Modelling and Simulation of a Prototype Electric Vehicle Powered by Photovoltaic Energy DOI Open Access
Sidy Mactar Sokhna,

Sory Diarra,

Mohamed El Amine Ait Ali

и другие.

Опубликована: Июль 10, 2024

The study involves the creation of a solar-powered car that can travel up to 70 km with maximum speed 35.7 km/h, vehicle mass is 300 kg. It stores some energy, which then converted into electric energy be consumed by other electrical appliances, making it an generator. two back wheels are equipped 3,000 W motors enable movement. When moves, power dissipates due resistances must overcome move it. Auxiliary components and battery powering system also require resulting in not all being transmitted vehicle's wheels. This article aims create prototype model. A model photovoltaic system, considering geographic coordinates solar parameters location, as well BLDC motor dynamics, required examine component behavior based on observable parameters. These pa-rameters consist resistive torque, angular speed, resistance values need evaluate performance. Once lost has been determined, remaining will allocated devices. variations considered crucial for performance mechanical supply one sources our provides 400 power.

Язык: Английский

Процитировано

0

Nonlinear Flux Linkage Observer with Model Reference Adaptive System for Improved Permanent Magnet Synchronous Motor Control DOI Creative Commons

Shaopeng Zhu,

Kaida Hu,

Jian Lin

и другие.

Actuators, Год журнала: 2024, Номер 13(10), С. 403 - 403

Опубликована: Окт. 6, 2024

This paper addresses performance degradation in nonlinear flux linkage algorithms, arising from estimation errors rotor due to fluctuations current and temperature. We introduce a parameter-adaptive model using MRAS, which dynamically adjusts the linkage, significantly minimizing improving control performance. When of motor undergoes sudden changes, shows speed fluctuation 5%, whereas reduces error 0.6%. The algorithm demonstrates strong robustness when stator resistance change. effectiveness under conditions such as load start mutation is excellent. Simulations experiments demonstrate that improves accuracy position parameters

Язык: Английский

Процитировано

0