Predictive methods for the evolution of oil well cement strength based on porosity DOI
Yuhao Wen,

Zi Chen,

Yuxuan He

и другие.

Materials and Structures, Год журнала: 2024, Номер 57(10)

Опубликована: Ноя. 4, 2024

Язык: Английский

Use of interpretable machine learning approaches for quantificationally understanding the performance of steel fiber-reinforced recycled aggregate concrete: From the perspective of compressive strength and splitting tensile strength DOI
S. Y. Zhang, Wenguang Chen, Jinjun Xu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109170 - 109170

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

30

Evaluating enhanced predictive modeling of foam concrete compressive strength using artificial intelligence algorithms DOI

Mohamed Abdellatief,

Leong Sing Wong,

Norashidah Md Din

и другие.

Materials Today Communications, Год журнала: 2024, Номер 40, С. 110022 - 110022

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

28

Grey wolf optimizer integrated within boosting algorithm: Application in mechanical properties prediction of ultra high-performance concrete including carbon nanotubes DOI
Aybike Özyüksel Çiftçioğlu, Farzin Kazemi, Torkan Shafighfard

и другие.

Applied Materials Today, Год журнала: 2025, Номер 42, С. 102601 - 102601

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

6

Prediction of non-uniform shrinkage of steel-concrete composite slabs based on explainable ensemble machine learning model DOI
Shiqi Wang, Jinlong Liu, Qinghe Wang

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 88, С. 109002 - 109002

Опубликована: Март 12, 2024

Язык: Английский

Процитировано

13

A review on properties and multi-objective performance predictions of concrete based on machine learning models DOI

Bowen Ni,

Md Zillur Rahman, Shuaicheng Guo

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112017 - 112017

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Probabilistic machine leaning models for predicting the maximum displacements of concrete-filled steel tubular columns subjected to lateral impact loading DOI
Dade Lai, Cristoforo Demartino, Yan Xiao

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 135, С. 108704 - 108704

Опубликована: Июнь 10, 2024

Язык: Английский

Процитировано

7

Integrating particle packing approach with ML techniques to optimise the compressive strength of RCA based concrete mixes DOI
Pallapothu Swamy Naga Ratna Giri, Rathish Kumar Pancharathi,

Layasri Midathada

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 94, С. 109994 - 109994

Опубликована: Июнь 21, 2024

Язык: Английский

Процитировано

7

Explainable artificial intelligence framework for FRP composites design DOI Creative Commons
Mostafa Yossef, Mohamed Noureldin,

Aghyad Alqabbany

и другие.

Composite Structures, Год журнала: 2024, Номер 341, С. 118190 - 118190

Опубликована: Май 7, 2024

Fiber-reinforced polymer (FRP) materials are integral to various industries, from automotive and aerospace infrastructure construction. While FRP composite design guidelines have been established, the process of obtaining desired strength an demands considerable time resources. Despite recent advancements in Machine Learning (ML) models which commonly used as predictive models, inherent 'black box' nature those poses challenges understanding relationship between input parameters output composite. Moreover, these do not provide tools facilitate designing The current study introduces explainable Artificial Intelligence (XAI) framework that will for input–output relationships model through SHapley Additive exPlanations (SHAP) Partial Dependence Plots (PDPs). In addition, provides first a approach adjusting important obtain by designer utilizing explainability technique called Counterfactual (CF). is evaluated 14-ply composite, successfully identifying critical parameters, specifying necessary adjustments meet requirements.

Язык: Английский

Процитировано

6

Failure node prediction study of in-service tunnel concrete for sulfate attack by PSO-LSTM based on Markov correction DOI Creative Commons

Kunpeng Cao,

Dunwen Liu, Yu Tang

и другие.

Case Studies in Construction Materials, Год журнала: 2024, Номер 20, С. e03153 - e03153

Опубликована: Апрель 15, 2024

Sulfate attack seriously affects the durability of concrete structures, and many tunnels constructed in China early years did not adequately take it into account, resulting structural degradation currently operating within their service life. In this study, we integrated experimental machine learning (ML) approaches to assess tunnel concrete. Specifically, compared deteriorated by sulfate with freshly poured lining that was built using same mix ratio. By analyzing ultrasonic velocity data for different periods wet dry cyclic accelerated erosion experiments, evaluated effectiveness multiple time series statistical methods, ML techniques, optimization algorithms. Through analysis, derived best prediction model Particle Swarm Optimization - Long Short Term Memory (PSO-LSTM) its Markov-corrected results. Based on damage nodes compressive strength corrosion resistance coefficient (CCSCRC) actual test, target existing are predicted. The results show that: (1) PSO-LSTM is well adapted deterioration subjected attack, a correlation R2 0.9739. (2) corrected Markov chain can effectively capture trend predicted improve accuracy. (3) When CCSCRC decreased 82 %, loosening granulation occurred. addition, failure structure observed at 677.6 days after sampling, less than two years. outcomes research enhance precision predicting life linings providing valuable insights on-site maintenance construction, contributing as reference similar studies.

Язык: Английский

Процитировано

4

Proposal of a sequential machine learning modelling approach for optimal cementitious composites DOI Creative Commons
Elyas Asadi Shamsabadi, Saeed Mohammadzadeh Chianeh, Daniel Dias‐da‐Costa

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 143, С. 109837 - 109837

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

0