Vendor Managed Inventory in Practice: Efficient Scheduling and Delivery Optimization DOI Creative Commons
Ibrahim Badi, Gülay Demir, Mouhamed Bayane Bouraima

и другие.

Spectrum of Decision Making and Applications., Год журнала: 2024, Номер 2(1), С. 157 - 164

Опубликована: Ноя. 23, 2024

Vendor Managed Inventory (VMI) is a widely adopted strategy in supply chain management, where the vendor assumes responsibility for maintaining inventory levels at customer’s location. This paper presents model to solve VMI problem, focusing on optimizing replenishment and reducing overall costs. The study employs heuristic approach, breaking down problem into manageable phases, including clustering customers, determining service sequence lists, delivery routes. applied practical case study, demonstrating its effectiveness minimizing stockouts while efficient levels. also examines key factors like quantity optimization, route scheduling, cost minimization. model's demonstrated by specific performance criteria, such as reduced stockouts, improved levels, minimized transportation findings indicate that suggested can significantly enhance efficiency, providing organizations with solid framework enhancing their procedures. These enhancements are accomplished preserving simplicity usefulness without need overly complex technological systems.

Язык: Английский

Enhancing Supply Chain Management with Deep Learning and Machine Learning Techniques: A Review DOI Creative Commons
Ahmed M. Khedr,

Sheeja Rani S

Journal of Open Innovation Technology Market and Complexity, Год журнала: 2024, Номер unknown, С. 100379 - 100379

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

20

Does the bullwhip effect really help a dual-channel retailing with a conditional home delivery policy? DOI
Biswajit Sarkar, Sumi Kar, Anita Pal

и другие.

Journal of Retailing and Consumer Services, Год журнала: 2024, Номер 78, С. 103708 - 103708

Опубликована: Янв. 24, 2024

Язык: Английский

Процитировано

8

Deep Reinforcement Learning Algorithms for Dynamic Pricing and Inventory Management of Perishable Products DOI
Tuğçe YAVUZ, Onur Kaya

Applied Soft Computing, Год журнала: 2024, Номер 163, С. 111864 - 111864

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

6

Management of drug supply chain information based on “artificial intelligence + vendor managed inventory” in China: perspective based on a case study DOI Creative Commons

Jianwen Shen,

Fengjiao Bu,

Zhengqiang Ye

и другие.

Frontiers in Pharmacology, Год журнала: 2024, Номер 15

Опубликована: Июль 16, 2024

Objectives To employ a drug supply chain information system to optimize management practices, reducing costs and improving efficiency in financial asset management. Methods A digital artificial intelligence + vendor managed inventory (AI+VMI)-based for hospitals has been established. The enables digitalization intelligentization of purchasing plans, reconciliations, consumption settlements while generating purchase, sales, reports as well various query reports. indicators evaluating the effectiveness before after project implementation encompass loss reporting, discrepancies, inter-hospital medication retrieval frequency, expenditure, cloud pharmacy service utilization. Results successful this reduced hospital rate approximately 20% decreased average annual error from 0.425‰ 0.025‰, significantly boosting by 42.4%. It also minimized errors application, allocation, distribution increasing adverse reaction Drug across multiple districts standardized, leading improved access medicines enhanced patient satisfaction. Conclusion AI+VMI improves ensuring security, costs, enhancing safety management, elevating professional competence level pharmaceutical personnel.

Язык: Английский

Процитировано

4

Robust optimal model of green vendor-managed inventory for carbon emission reduction and supply chain visibility DOI
Xiaoyi Zhang, Qixuan Liu, Yueqi Dong

и другие.

International Journal of Systems Science Operations & Logistics, Год журнала: 2025, Номер 12(1)

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

0

A Deep Reinforcement Learning Model for the Automation of a Collaborative Purchasing Process DOI

Mario J. Seni,

David Peidro

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 289 - 303

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Boosting Governance-Centric Digital Product Passports Through Traceability in Footwear Industry DOI

Hugo Moço,

Cristóvão Sousa, Ricardo Ferreira

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 198 - 206

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Deep Learning for Demand Forecasting: A Framework Incorporating Variational Mode Decomposition and Attention Mechanism DOI Open Access

Chunrui Lei,

Heng Zhang, Wang Zhi-gang

и другие.

Processes, Год журнала: 2025, Номер 13(2), С. 594 - 594

Опубликована: Фев. 19, 2025

Accurate demand forecasting is crucial for modern supply chain management, forming the foundation inventory optimization, cost control, and service level improvement. However, time series data often exhibit high volatility diverse patterns, further complicated by rapid expansion heterogeneity of sources. These challenges can result in significant degradation predictive accuracy when traditional models are applied to complex datasets. To address these challenges, this study proposes an end-to-end framework leveraging Variational Mode Decomposition (VMD) attention mechanisms. The first employs VMD decompose raw into multiple modes extract hierarchical features, including trends, seasonal short-term variations. Subsequently, mechanism introduced dynamically capture integrate sequences alongside contextual information, enhancing focus on critical features improving performance. Experimental results demonstrate that proposed method achieves superior compared conventional approaches, with a 37% reduction Mean Absolute Error (MAE) relative baseline models. This substantial improvement provides actionable insights decision-makers, enabling more efficient production planning, overall optimization.

Язык: Английский

Процитировано

0

Analysis of Key Challenges to Implementation of FEFO in Perishable Food Supply Chain DOI Creative Commons

Jayakrishna Kandasamy,

K. E. K. Vimal,

Aditya Singh

и другие.

Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101848 - 101848

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Design and implementation of a soft Actor–Critic controller for a robotic arm DOI
Ping‐Huan Kuo, Chen-Ting Huang, Chen-Wen Chang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 151, С. 110589 - 110589

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0