An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery DOI Creative Commons
Spyros Rigas, Paraskevi Tzouveli, Stefanos Kollias

и другие.

Sensors, Год журнала: 2024, Номер 24(16), С. 5310 - 5310

Опубликована: Авг. 16, 2024

The Industrial Internet of Things has enabled the integration and analysis vast volumes data across various industries, with maritime sector being no exception. Advances in cloud computing deep learning (DL) are continuously reshaping industry, particularly optimizing operations such as Predictive Maintenance (PdM). In this study, we propose a novel DL-based framework focusing on fault detection task PdM marine operations, leveraging time-series from sensors installed shipboard machinery. is designed scalable cost-efficient software solution, encompassing all stages collection pre-processing at edge to deployment lifecycle management DL models. proposed architecture utilizes Graph Attention Networks (GATs) extract spatio-temporal information provides explainable predictions through feature-wise scoring mechanism. Additionally, custom evaluation metric real-world applicability employed, prioritizing both prediction accuracy timeliness identification. To demonstrate effectiveness our framework, conduct experiments three types open-source datasets relevant PdM: electrical data, bearing datasets, water circulation experiments.

Язык: Английский

Ship energy consumption prediction: Multi-model fusion methods and multi-dimensional performance evaluation DOI
Zhihui Hu, Ailong Fan, Wengang Mao

и другие.

Ocean Engineering, Год журнала: 2025, Номер 322, С. 120538 - 120538

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

2

A grey-box deep learning modelling strategy for fuel oil consumption prediction: A case study of tuna purse seiner DOI Creative Commons
Yi Zhou, Kayvan Pazouki, Rosemary Norman

и другие.

Ocean Engineering, Год журнала: 2025, Номер 324, С. 120733 - 120733

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

1

An online method for ship trajectory compression using AIS data DOI

Liu Zhao,

Wensen Yuan,

Maohan Liang

и другие.

Journal of Navigation, Год журнала: 2024, Номер unknown, С. 1 - 22

Опубликована: Май 31, 2024

Abstract Vessel trajectories from the Automatic Identification System (AIS) play an important role in maritime traffic management, but a drawback is huge amount of memory occupation which thus results low speed data acquisition applications due to large number scattered data. This paper proposes novel online vessel trajectory compression method based on Improved Open Window (IOPW) algorithm. The proposed compresses instantly according coordinates along with timestamp driven by AIS In particular, we adopt weighted Euclidean distance (WED), fusing perpendicular (PED) and synchronous (SED) IOPW improve robustness. realistic AIS-based are used illustrate model comparing it five traditional methods. experimental reveal that could effectively maintain features significantly reduce rate loss during trajectories.

Язык: Английский

Процитировано

9

Microscopic characteristics and influencing factors of ship emissions based on onboard measurements DOI
Ailong Fan,

Yuqi Xiong,

Junhui Yan

и другие.

Transportation Research Part D Transport and Environment, Год журнала: 2024, Номер 133, С. 104300 - 104300

Опубликована: Июнь 25, 2024

Язык: Английский

Процитировано

9

GA-LSTM and NSGA-III based collaborative optimization of ship energy efficiency for low-carbon shipping DOI
Zhongwei Li, Kai Wang,

Yu Hua

и другие.

Ocean Engineering, Год журнала: 2024, Номер 312, С. 119190 - 119190

Опубликована: Сен. 24, 2024

Язык: Английский

Процитировано

8

Investigation of ship energy consumption based on neural network DOI
Yaqing Shu, Benshuang yu, Wei Liu

и другие.

Ocean & Coastal Management, Год журнала: 2024, Номер 254, С. 107167 - 107167

Опубликована: Май 10, 2024

Язык: Английский

Процитировано

7

A hybrid deep learning method for the real-time prediction of collision damage consequences in operational conditions DOI Creative Commons
Mingyang Zhang, Hongdong Wang,

Fabien Conti

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 145, С. 110158 - 110158

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

1

Ship regulatory method for maritime mixed traffic scenarios based on key risk ship identification DOI
Yiyang Zou, Yingjun Zhang, Shaobo Wang

и другие.

Ocean Engineering, Год журнала: 2024, Номер 298, С. 117105 - 117105

Опубликована: Фев. 23, 2024

Язык: Английский

Процитировано

6

Shipping market time series forecasting via an Ensemble Deep Dual-Projection Echo State Network DOI
Xuefei Song, Zhong Shuo Chen

Computers & Electrical Engineering, Год журнала: 2024, Номер 117, С. 109218 - 109218

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

6

Ship fuel consumption prediction based on transfer learning: Models and applications DOI

Xi Luo,

Mingyang Zhang, Yi Han

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 141, С. 109769 - 109769

Опубликована: Дек. 2, 2024

Язык: Английский

Процитировано

6