Crack Detection in Civil Infrastructure: A Method-Scenario Review DOI Creative Commons
Haochen Chang, Wei Gu,

Botao Guo

и другие.

E3S Web of Conferences, Год журнала: 2025, Номер 631, С. 01001 - 01001

Опубликована: Янв. 1, 2025

Ensuring the structural safety of civil infrastructure is vital for public welfare and cost-effective maintenance. Crack detection, as a key indicator health, has transitioned from traditional image processing to advanced deep learning methods. This paper presents systematic review crack detection technologies organized under novel “method-scenario” framework that categorizes techniques based on their underlying algorithms specific application contexts (e.g., pavements, bridges, tunnels, specialized materials). By comparing conventional approaches with modern models multi-modal fusion techniques, we highlight strengths limitations each method in various real-world scenarios. Our analysis reveals critical challenges—including data scarcity, sensitivity noise, gap between theoretical practical deployment—which must be addressed enhance reliability generalizability. We conclude by proposing future research directions focused integrating physics-based constraints lightweight computational establishing unified evaluation protocols bridge laboratory precision engineering implementation.

Язык: Английский

PipeTransUNet: CNN and Transformer fusion network for semantic segmentation and severity quantification of multiple sewer pipe defects DOI
Mingze Li, Mingchao Li, Qiubing Ren

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 159, С. 111673 - 111673

Опубликована: Апрель 26, 2024

Язык: Английский

Процитировано

11

Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation DOI Creative Commons
Fangyan Nie, Mengzhu Liu, Pingfeng Zhang

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Апрель 1, 2024

Abstract Crack formation is a common phenomenon in engineering structures, which can cause serious damage to the safety and health of these structures. An important method ensuring engineered structures prompt detection cracks. Image threshold segmentation based on machine vision crucial technology for crack detection. Threshold separate area from background, providing convenience more accurate measurement evaluation condition location. The cracks complex scenes challenging task, this goal be achieved by means multilevel thresholding. arithmetic-geometric divergence combines advantages arithmetic mean geometric probability measures, enabling precise capture local features an image processing. In paper, thresholding minimum proposed. To address issue time complexity thresholding, enhanced particle swarm optimization algorithm with stochastic perturbation detection, criterion function adaptively determine thresholds according distribution characteristics pixel values image. proposed increase diversity candidate solutions enhance global convergence performance algorithm. compared seven state-of-the-art methods several metrics, including RMSE, PSNR, SSIM, FSIM, computation time. experimental results show that outperforms competing terms metrics.

Язык: Английский

Процитировано

9

Applications of generative adversarial networks in materials science DOI Creative Commons
Yuan Jiang, Jinshan Li, Xiang Lin Yang

и другие.

Materials Genome Engineering Advances, Год журнала: 2024, Номер 2(1)

Опубликована: Март 1, 2024

Abstract Generative adversarial networks (GANs), as a powerful tool for inverse materials discovery, are being increasingly applied in various fields of science. This review provides systematic investigations on the applications GANs from group different aspects. The basic principles first introduced; then detailed GANs‐based studies regarding distinct scenarios across composition design, processing optimization, crystal structure search, microstructure characterization and defect detection is presented. At end, several challenges possible solutions discussed outlined. overview highlights efficacy science, may stimulate further use more intriguing achievements.

Язык: Английский

Процитировано

8

Advancing spatial-temporal rock fracture prediction with virtual camera-based data augmentation DOI
Jiawei Xie, Baolin Chen, Jinsong Huang

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 158, С. 106400 - 106400

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Feasibility of Advanced Reflective Cracking Prediction and Detection for Pavement Management Systems Using Machine Learning and Image Detection DOI Creative Commons

Sung-Pil Shin,

Kyungnam Kim, Tri Ho Minh Le

и другие.

Buildings, Год журнала: 2024, Номер 14(6), С. 1808 - 1808

Опубликована: Июнь 14, 2024

This research manuscript presents a comprehensive investigation into the prediction and detection of reflective cracking in pavement infrastructure through combination machine learning approaches advanced image techniques. Leveraging algorithms, models were developed optimized for accuracy efficiency. Additionally, efficacy methods, particularly utilizing Mask R-CNN, was explored robust precise identification on surfaces. The study not only aims to enhance predictive capabilities management systems (PMSs) learning-based but also seeks integrate technologies support real-time monitoring assessment conditions. By providing accurate timely cracking, these methodologies contribute optimization maintenance strategies overall improvement practices. Results indicate that achieve an average over 85%, with some achieving accuracies exceeding 90%. Moreover, utilization mask region-based convolutional neural network (Mask R-CNN) demonstrates exceptional precision, 95% across different types weather results demonstrate promising performance predicting while R-CNN showcases from images. underscores importance leveraging cutting-edge address challenges management, ultimately supporting sustainability longevity transportation networks.

Язык: Английский

Процитировано

5

Enhancing pavement crack segmentation via semantic diffusion synthesis model for strategic road assessment DOI Creative Commons
Saúl Cano-Ortiz,

Eugenio Sainz-Ortiz,

L. Lloret Iglesias

и другие.

Results in Engineering, Год журнала: 2024, Номер 23, С. 102745 - 102745

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

4

Automatic PAUT crack detection and depth identification framework based on inspection robot and deep learning method DOI Creative Commons
Fei Hu, Hongye Gou, Haozhe Yang

и другие.

Journal of Infrastructure Intelligence and Resilience, Год журнала: 2024, Номер 4(1), С. 100113 - 100113

Опубликована: Авг. 30, 2024

Язык: Английский

Процитировано

4

Survey of automated crack detection methods for asphalt and concrete structures DOI
Oumaima Khlifati, Khadija Baba, Bassam A. Tayeh

и другие.

Innovative Infrastructure Solutions, Год журнала: 2024, Номер 9(11)

Опубликована: Окт. 27, 2024

Язык: Английский

Процитировано

4

A survey of generative models for image-based structural health monitoring in civil infrastructure DOI Creative Commons
Gi-Hun Gwon, Hyung‐Jo Jung

Journal of Infrastructure Intelligence and Resilience, Год журнала: 2025, Номер unknown, С. 100138 - 100138

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

An intelligent detection method for precise analysis of shield tunnel lining joints based on deep learning networks and image morphology algorithms DOI

Yiding Ma,

Dechun Lu, Fanchao Kong

и другие.

Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, Год журнала: 2025, Номер unknown, С. 1 - 20

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

0