A Study of Intelligent Parking: Urban Efficiency Through Advanced Automated Systems Based on Green Energy Management DOI

Alexandra-Valentina Chiliment,

Florina-Gabriela Tiron,

Andreea-Gabriela Voicu

и другие.

2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Год журнала: 2024, Номер unknown, С. 1 - 7

Опубликована: Июнь 27, 2024

Язык: Английский

A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations DOI
Akram Elomiya, Jiří Křupka, Stefan Jovčić

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 106, С. 105397 - 105397

Опубликована: Апрель 8, 2024

Язык: Английский

Процитировано

22

A design and development of distance measure for Fermatean fuzzy sets with varied applications in real-time DOI

R. Premalatha,

K. Somasundaram

Journal of Ambient Intelligence and Humanized Computing, Год журнала: 2025, Номер unknown

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Curb Parking Occupancy Prediction based on Real-time Fusion of Multi-view Spatial-temporal Information using Graph Attention Gated Networks DOI
Chonghui Qian,

Kexu Yang,

Jiangping He

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112781 - 112781

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Constraint Optimization Model for Dynamic Parking Space Allocation DOI Creative Commons

Abdelrahman Osman Elfaki,

Wassim Messoudi,

Anas Bushnag

и другие.

Sensors, Год журнала: 2024, Номер 24(12), С. 3988 - 3988

Опубликована: Июнь 19, 2024

Managing car parking systems is a complex process because multiple constraints must be considered; these include organizational and operational constraints. In this paper, constraint optimization model for dynamic space allocation introduced. An ad hoc algorithm proposed, presented, explained to achieve the goal of our proposed model. This paper makes research contributions by providing an intelligent prioritization mechanism, considering user schedule shifts constraints, assigning suitable slots based on distribution. The implemented demonstrate applicability approach. A benchmark constructed well-defined metrics validate results achieved.

Язык: Английский

Процитировано

3

Evaluating nano-metal oxide mixed matrix membranes for whey protein separation using hybrid intelligent optimization learning DOI

Lukka Thuyavan Yogarathinam,

Jamilu Usman, Sani I. Abba

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 205, С. 388 - 400

Опубликована: Апрель 11, 2024

Язык: Английский

Процитировано

1

Deep Learning based Efficient Parking Management System Framework DOI

P Sathishkumar,

R Boopalan,

S Kiruthiga Shree

и другие.

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

1

A Hybrid Strategy-Improved SSA-CNN-LSTM Model for Metro Passenger Flow Forecasting DOI Creative Commons
Jing Liu,

Qingling He,

Zhenyu Yue

и другие.

Mathematics, Год журнала: 2024, Номер 12(24), С. 3929 - 3929

Опубликована: Дек. 13, 2024

To address the issues of slow convergence and large errors in existing metaheuristic algorithms when optimizing neural network-based subway passenger flow prediction, we propose following improvements. First, replace random initialization method population SSA with Circle mapping to enhance its diversity quality. Second, introduce a hybrid mechanism combining dimensional small-hole imaging backward learning Cauchy mutation, which improves individual sparrow selection optimal positions helps overcome algorithm’s tendency become trapped local optima premature convergence. Finally, position update process by integrating cosine strategy an inertia weight adjustment, global search ability, effectively balancing exploitation, reducing risk insufficient precision. Based on analysis correlation between different types station flows weather factors, ISSA is used optimize hyperparameters CNN-LSTM model construct prediction based ISSA-CNN-LSTM. Simulation experiments were conducted using card swipe data from Harbin Metro Line 1. The results show that provides more accurate optimization average values standard deviations 12 benchmark test function simulations being closer values. ISSA-CNN-LSTM outperforms SSA-CNN-LSTM, PSO-ELMAN, GA-BP, CNN-LSTM, LSTM models terms error evaluation metrics such as MAE, RMSE, MAPE, improvements ranging 189.8% 374.6%, 190.9% 389.5%, 3.3% 6.7%, respectively. Moreover, exhibits smallest variation across stations. demonstrates superior parameter accuracy speed compared SSA. suitable for precise at stations, providing theoretical support density trend forecasting, organization management, emergency response, improvement service quality operational safety.

Язык: Английский

Процитировано

0

Advanced optimization-based weighted features for ensemble deep learning smart occupancy detection network for road traffic parking DOI

B Padmavathi,

Vanaja Selvaraj

Journal of Network and Computer Applications, Год журнала: 2024, Номер 230, С. 103924 - 103924

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

0

A Study of Intelligent Parking: Urban Efficiency Through Advanced Automated Systems Based on Green Energy Management DOI

Alexandra-Valentina Chiliment,

Florina-Gabriela Tiron,

Andreea-Gabriela Voicu

и другие.

2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Год журнала: 2024, Номер unknown, С. 1 - 7

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

0