A new ventilation method for rapidly diluting coal mine gas: Experimental and simulation of airflow field with bladeless fan DOI
Peng Liu, Nan Chen, Baisheng Nie

и другие.

Energy Sources Part A Recovery Utilization and Environmental Effects, Год журнала: 2025, Номер 47(1), С. 11928 - 11945

Опубликована: Май 12, 2025

Язык: Английский

Energy efficiency and air distribution characteristics of jet ventilation in crossflow for long-narrow mining working faces DOI
Jue Wang, Jiang Cheng, Guang Yang

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(1)

Опубликована: Янв. 1, 2025

Long-term exposure to extreme heat in mines jeopardizes worker health and reduces productivity. This study introduces evaluates the air distribution of jet ventilation crossflow (JVIC) mode for localized mine cooling. Experimental numerical simulations reveal two distinct wake structures: single wakes wall-attached impinging jets, double deflected influenced by counter-rotating vortex pair (CVP) structures, which accelerate cooling loss. Key parameters—jet-to-crossflow velocity ratio (R), vent equivalent diameter-to-roadway height (C), jet-to-crossflow Reynolds number ratio—govern flow modes CVP dynamics, while temperature (T) primarily affects within jet, confirming a velocity-dominated field. A quantitative model was developed characterize JVIC distribution, detailing boundaries, diffusion widths, trajectories. The demonstrates that highly jets enable more stable with slower reduced energy Under conditions R = 1 C 3, achieves highest local effectiveness (εt), maintaining efficiency 29.9% at x/dm demonstrating JVIC's ability maintain effective over extended distances. practical evaluation shows novel load 184.9 kW, reducing consumption 86.7% compared traditional full-air (1387 kW). These findings highlight potential efficient, targeted ventilation, advancing conservation.

Язык: Английский

Процитировано

1

Application of artificial intelligence in mine ventilation: a brief review DOI Creative Commons
M. A. Semin, D. S. Kormshchikov

Frontiers in Artificial Intelligence, Год журнала: 2024, Номер 7

Опубликована: Май 2, 2024

In recent years, there has been a notable integration of artificial intelligence (AI) technologies into mine ventilation systems. A network presents complex system with numerous interconnected processes, some which pose challenges for deterministic simulation methods. The utilization machine learning techniques and evolutionary algorithms offers promising avenue to address these complexities, resulting in enhanced monitoring control air parameter distribution within the network. These methods facilitate timely identification resistance faults enable prompt calculation parameters during emergency scenarios, such as underground explosions fires. Furthermore, play crucial role advancement visual analysis However, it is essential acknowledge that current AI limited does not encompass full spectrum challenging-to-formalize problems. Promising areas application include analyzing changes caused by unaccounted thermal draft gas pressure, well developing novel approaches calculating shock losses. Moreover, optimizing large-scale networks remains an unresolved issue. Addressing holds significant potential enhancing safety efficiency

Язык: Английский

Процитировано

8

Energy Consumption Reduction in Underground Mine Ventilation System: An Integrated Approach Using Mathematical and Machine Learning Models Toward Sustainable Mining DOI Open Access

Hussein A. Saleem

Sustainability, Год журнала: 2025, Номер 17(3), С. 1038 - 1038

Опубликована: Янв. 27, 2025

This study presents an integrated approach combining the Hardy Cross method and a gradient boosting (GB) optimization model to enhance ventilation systems in underground mines, with specific application at Jabal Sayid mine Saudi Arabia. The addresses variations airflow resistance caused by obstacles within pathways, enabling accurate predictions of flow distribution across network. GB complements this optimizing fan placement, pressure control, intensity achieve reduced energy consumption improved efficiency. results demonstrate significant improvements efficiency, optimized usage, enhanced effectiveness, achieving 31.24% reduction electricity consumption. bridges deterministic machine learning methodologies, offering novel framework for real-time systems. By GB, proposed outperforms traditional techniques predicting under dynamic conditions.

Язык: Английский

Процитировано

0

A machine learning model integrating spatiotemporal attention and residual learning for predicting periodic air pollutant concentrations DOI
Farun An, Dong Yang,

Xiaoyue Sun

и другие.

Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106438 - 106438

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A New Proportional-Integral-Derivative Automatic Control Method Complemented by Computational Fluid Dynamics for Gas Concentration in the Tunneling Face DOI
Qiu Sun, Xiaobin Yang, Jianing Wu

и другие.

Arabian Journal for Science and Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 18, 2025

Язык: Английский

Процитировано

0

Intelligent equalizing pressure ventilation system for coal mine: A case study of the 104 coal mining face in Shige Tai Mine DOI
Feng Geng, Wei Li, Yanqing Liu

и другие.

Energy Reports, Год журнала: 2025, Номер 13, С. 4998 - 5005

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

An advanced approach for cloud enabled energy efficient ventilation control of multiple main fans in underground coal mines DOI

Prasad Bhukya,

Bhukya Krishna Naick

Computers & Electrical Engineering, Год журнала: 2025, Номер 124, С. 110330 - 110330

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A new ventilation method for rapidly diluting coal mine gas: Experimental and simulation of airflow field with bladeless fan DOI
Peng Liu, Nan Chen, Baisheng Nie

и другие.

Energy Sources Part A Recovery Utilization and Environmental Effects, Год журнала: 2025, Номер 47(1), С. 11928 - 11945

Опубликована: Май 12, 2025

Язык: Английский

Процитировано

0