Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 142, С. 109886 - 109886
Опубликована: Дек. 27, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 142, С. 109886 - 109886
Опубликована: Дек. 27, 2024
Язык: Английский
Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 152, С. 105951 - 105951
Опубликована: Июль 5, 2024
Язык: Английский
Процитировано
10Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 151, С. 105845 - 105845
Опубликована: Июнь 5, 2024
Язык: Английский
Процитировано
7Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 144, С. 110097 - 110097
Опубликована: Янв. 25, 2025
Язык: Английский
Процитировано
1Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown
Опубликована: Май 1, 2024
The warming and thawing of permafrost are the primary factors that impact stability embankments in cold regions. However, due to uncertainties thermal boundaries soil properties, stochastic modeling regimes is challenging computationally expensive. To address this, we propose a knowledge-integrated deep learning method for predicting regime Geotechnical knowledge embedded training data through numerical modeling, while neural network learns mapping from boundary property fields temperature field. effectiveness our verified comparison with monitoring analysis results. Experimental results show proposed achieves good accuracy small coefficient variation. It still provides satisfactory as variation increases. an efficient approach predict heterogeneous embankments. can also be used other engineering investigations require modeling.
Язык: Английский
Процитировано
4Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 485 - 500
Опубликована: Янв. 1, 2025
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Physics of Fluids, Год журнала: 2025, Номер 37(3)
Опубликована: Март 1, 2025
Real-time wave prediction is crucial for optimizing offshore renewable energy capture and ensuring the safety of floating structures. However, stochastic nonlinear nature waves presents significant challenges accurate robust predictions. This study proposes a model based on Deep Operator Network (DON-WP), which learns operator to map historical heights future heights. By leveraging this operator-learning framework, demonstrates strong generalization across function space, enabling it adapt previously unseen conditions. Specifically, branch net encodes data into functional representations, while trunk captures targets as evaluation points output function. These outputs are then combined through element-wise operations generate precise The model's ability robustness validated using tank experimental multiple sea states, its performance compared with Long Short-Term Memory network-based probabilistic (Deep-WP). Results show that DON-WP, trained single state, achieves over 30% higher accuracy most horizons up 60% improvement shorter steps Deep-WP, requires retraining each state. highlights DON-WP an effective approach dynamics modeling, potential advance systems enhance
Язык: Английский
Процитировано
0The Journal of Chemical Physics, Год журнала: 2025, Номер 162(11)
Опубликована: Март 17, 2025
The piezoionic effect holds significant promise for revolutionizing biomedical electronics and ionic skins. However, modeling this multiphysics phenomenon remains challenging due to its high complexity computational limitations. To address problem, study pioneers the application of deep operator networks effectively model time-dependent effect. By leveraging a data-driven approach, our significantly reduces time compared traditional finite element analysis (FEA). In particular, we trained DeepONet using comprehensive dataset generated through FEA calibrated experimental data. Through rigorous testing with step responses, slow-changing forces, dynamic-changing show that captures intricate temporal dynamics in both horizontal vertical planes. This capability offers powerful tool real-time phenomena, contributing simplifying design tactile interfaces potentially complementing existing imaging technologies.
Язык: Английский
Процитировано
0Frontiers in Earth Science, Год журнала: 2025, Номер 13
Опубликована: Апрель 25, 2025
Accurate prediction of water inrush volumes is essential for safeguarding tunnel construction operations. This study proposes a method predicting volumes, leveraging the eXtreme Gradient Boosting (XGBoost) model optimized with Bayesian techniques. To maximize utility available data, 654 datasets missing values were imputed and augmented, forming robust dataset training validation XGBoost (BO-XGBoost) model. Furthermore, SHapley Additive explanations (SHAP) was employed to elucidate contribution each input feature predictive outcomes. The results indicate that: (1) constructed BO-XGBoost exhibited exceptionally high accuracy on test set, root mean square error (RMSE) 7.5603, absolute (MAE) 3.2940, percentage (MAPE) 4.51%, coefficient determination (R 2 ) 0.9755; (2) Compared performance support vector mechine (SVR), decision tree (DT), random forest (RF) models, demonstrates highest R smallest error; (3) importance yielded by SHAP groundwater level ( h > water-producing characteristics W burial depth H rock mass quality index RQD ). proposed volume dataset, thereby aiding managers in making informed decisions mitigate risks ensuring safe efficient advancement projects.
Язык: Английский
Процитировано
0