Kernelized Fuzzy-Rough Anomaly Detection DOI
Wu Yan, Sihan Wang, Hongmei Chen

и другие.

IEEE Transactions on Fuzzy Systems, Год журнала: 2024, Номер 32(8), С. 4285 - 4296

Опубликована: Апрель 25, 2024

Anomaly detection is a significant area of discovering knowledge that has shown success in the areas fraud detection, cyber security, and medical diagnostics. The kernelized fuzzy-rough set key extension model rough computing. It inherits advantages kernel function can handle uncertain information data more effectively. However, existing models construct upper lower approximation sets mainly from decision attribute which are not available to unlabeled data. In addition, best our knowledge, studies related use fuzzy for constructing effective anomaly have yet been reported. Based on these observations, this paper constructs proposes (KFRAD) method. Specifically, we first optimize compute relation matrix subsets space. Then, definition accuracy given. granule extent determined based accuracy. Finally, extents corresponding weight values integrated scores objects. On basis above ideas, design KFRAD algorithm experimentally compare it with mainstream algorithms. analysis results show proposed better performance. code publicly online at https://github.com/wwwuyan/KFRAD .

Язык: Английский

Anomaly detection based on fuzzy neighborhood rough sets DOI
Yuan Yuan, Sihan Wang, Hongmei Chen

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 122075 - 122075

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Anomaly Detection Using Fuzzy Information Entropy for Incomplete Data DOI

Yuhao Tang,

Chang Liu, Zhong Yuan

и другие.

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 140 - 162

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Kernelized Fuzzy-Rough Anomaly Detection DOI
Wu Yan, Sihan Wang, Hongmei Chen

и другие.

IEEE Transactions on Fuzzy Systems, Год журнала: 2024, Номер 32(8), С. 4285 - 4296

Опубликована: Апрель 25, 2024

Anomaly detection is a significant area of discovering knowledge that has shown success in the areas fraud detection, cyber security, and medical diagnostics. The kernelized fuzzy-rough set key extension model rough computing. It inherits advantages kernel function can handle uncertain information data more effectively. However, existing models construct upper lower approximation sets mainly from decision attribute which are not available to unlabeled data. In addition, best our knowledge, studies related use fuzzy for constructing effective anomaly have yet been reported. Based on these observations, this paper constructs proposes (KFRAD) method. Specifically, we first optimize compute relation matrix subsets space. Then, definition accuracy given. granule extent determined based accuracy. Finally, extents corresponding weight values integrated scores objects. On basis above ideas, design KFRAD algorithm experimentally compare it with mainstream algorithms. analysis results show proposed better performance. code publicly online at https://github.com/wwwuyan/KFRAD .

Язык: Английский

Процитировано

2