Pipeline and Rotating Pump Condition Monitoring Based on Sound Vibration Feature-Level Fusion DOI Creative Commons

Yu Wan,

Shaochen Lin, Yan Gao

и другие.

Machines, Год журнала: 2024, Номер 12(12), С. 921 - 921

Опубликована: Дек. 16, 2024

The rotating pump of pipelines are susceptible to damage based on extended operations in a complex environment high temperature and pressure, which leads abnormal vibrations noises. Currently, the method for detecting conditions pumps primarily involves identifying their sounds vibrations. Due background noise, performance condition monitoring is unsatisfactory. To overcome this issue, pipeline proposed by extracting fusing sound vibration features different ways. Firstly, hand-crafted feature set established from two aspects vibration. Moreover, convolutional neural network (CNN)-derived one-dimensional CNN (1D CNN). For CNN-derived sets, selection presented significant ranking according importance, calculated ReliefF random forest score. Finally, applied at level. According signals obtained experimental platform, was evaluated, showing an average accuracy 93.27% conditions. effectiveness superiority manifested through comparison ablation experiments.

Язык: Английский

Experimental study on leakage monitoring of buried water pipelines based on actively heated optical frequency domain reflection technology DOI
Lin Cheng, Yuheng Zhang,

Z.J. Wang

и другие.

International Journal of Thermal Sciences, Год журнала: 2025, Номер 211, С. 109685 - 109685

Опубликована: Янв. 10, 2025

Язык: Английский

Процитировано

0

Zero-shot pipeline fault detection using percussion method and multi-attribute learning model DOI

Longguang Peng,

Wenjie Huang,

Jicheng Zhang

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 228, С. 112427 - 112427

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

0

State prediction for multiple diffusion targets based on point pattern physics-informed neural network DOI
Qiankun Sun, Lei Cai, Xiaochen Qin

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129714 - 129714

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Leak detection in water supply networks using two-stage temporal segmentation and incremental learning for non-stationary acoustic signals DOI Creative Commons

Xingke Ma,

Yipeng Wu, Guancheng Guo

и другие.

Water Research X, Год журнала: 2025, Номер unknown, С. 100333 - 100333

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

An efficient intelligent detection method for water pipeline leakages utilizing homologous Multi-Modal signal fusion DOI

Yijie Zhou,

Huizhou Liu, Xiaochun Cao

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117562 - 117562

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Multi-objective evolutionary co-learning framework for energy-efficient hybrid flow-shop scheduling problem with human-machine collaboration DOI
Jiawei Wu, Yong Liu, Yani Zhang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 95, С. 101932 - 101932

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

0

Pipeline and Rotating Pump Condition Monitoring Based on Sound Vibration Feature-Level Fusion DOI Creative Commons

Yu Wan,

Shaochen Lin, Yan Gao

и другие.

Machines, Год журнала: 2024, Номер 12(12), С. 921 - 921

Опубликована: Дек. 16, 2024

The rotating pump of pipelines are susceptible to damage based on extended operations in a complex environment high temperature and pressure, which leads abnormal vibrations noises. Currently, the method for detecting conditions pumps primarily involves identifying their sounds vibrations. Due background noise, performance condition monitoring is unsatisfactory. To overcome this issue, pipeline proposed by extracting fusing sound vibration features different ways. Firstly, hand-crafted feature set established from two aspects vibration. Moreover, convolutional neural network (CNN)-derived one-dimensional CNN (1D CNN). For CNN-derived sets, selection presented significant ranking according importance, calculated ReliefF random forest score. Finally, applied at level. According signals obtained experimental platform, was evaluated, showing an average accuracy 93.27% conditions. effectiveness superiority manifested through comparison ablation experiments.

Язык: Английский

Процитировано

1