Experimental study on leakage monitoring of buried water pipelines based on actively heated optical frequency domain reflection technology
International Journal of Thermal Sciences,
Год журнала:
2025,
Номер
211, С. 109685 - 109685
Опубликована: Янв. 10, 2025
Язык: Английский
Zero-shot pipeline fault detection using percussion method and multi-attribute learning model
Mechanical Systems and Signal Processing,
Год журнала:
2025,
Номер
228, С. 112427 - 112427
Опубликована: Фев. 6, 2025
Язык: Английский
State prediction for multiple diffusion targets based on point pattern physics-informed neural network
Neurocomputing,
Год журнала:
2025,
Номер
unknown, С. 129714 - 129714
Опубликована: Фев. 1, 2025
Язык: Английский
Leak detection in water supply networks using two-stage temporal segmentation and incremental learning for non-stationary acoustic signals
Water Research X,
Год журнала:
2025,
Номер
unknown, С. 100333 - 100333
Опубликована: Март 1, 2025
Язык: Английский
An efficient intelligent detection method for water pipeline leakages utilizing homologous Multi-Modal signal fusion
Measurement,
Год журнала:
2025,
Номер
unknown, С. 117562 - 117562
Опубликована: Апрель 1, 2025
Язык: Английский
Multi-objective evolutionary co-learning framework for energy-efficient hybrid flow-shop scheduling problem with human-machine collaboration
Swarm and Evolutionary Computation,
Год журнала:
2025,
Номер
95, С. 101932 - 101932
Опубликована: Апрель 14, 2025
Язык: Английский
Pipeline and Rotating Pump Condition Monitoring Based on Sound Vibration Feature-Level Fusion
Machines,
Год журнала:
2024,
Номер
12(12), С. 921 - 921
Опубликована: Дек. 16, 2024
The
rotating
pump
of
pipelines
are
susceptible
to
damage
based
on
extended
operations
in
a
complex
environment
high
temperature
and
pressure,
which
leads
abnormal
vibrations
noises.
Currently,
the
method
for
detecting
conditions
pumps
primarily
involves
identifying
their
sounds
vibrations.
Due
background
noise,
performance
condition
monitoring
is
unsatisfactory.
To
overcome
this
issue,
pipeline
proposed
by
extracting
fusing
sound
vibration
features
different
ways.
Firstly,
hand-crafted
feature
set
established
from
two
aspects
vibration.
Moreover,
convolutional
neural
network
(CNN)-derived
one-dimensional
CNN
(1D
CNN).
For
CNN-derived
sets,
selection
presented
significant
ranking
according
importance,
calculated
ReliefF
random
forest
score.
Finally,
applied
at
level.
According
signals
obtained
experimental
platform,
was
evaluated,
showing
an
average
accuracy
93.27%
conditions.
effectiveness
superiority
manifested
through
comparison
ablation
experiments.
Язык: Английский