Dynamic scheduling for flexible job-shop with reconfigurable manufacturing cells considering dynamic job arrivals based on deep reinforcement learning DOI
Liang Zheng, Xiaodi Chen, Cunbo Zhuang

и другие.

International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 33

Опубликована: Май 2, 2025

Язык: Английский

Exploring multi-agent reinforcement learning for unrelated parallel machine scheduling DOI

Maria Zampella,

Urtzi Otamendi,

Xabier Belaunzaran

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

1

Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping DOI
Lixiang Zhang, Yan Yan, Chen Yang

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102872 - 102872

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

Human and Machine Reliability Estimation in Discrete Simulations and Machine Learning for Industry 4.0 and 5.0 DOI Open Access
Wojciech M. Kempa, Iwona Paprocka, B. Skołud

и другие.

Symmetry, Год журнала: 2025, Номер 17(3), С. 377 - 377

Опубликована: Март 1, 2025

Currently, Industry 4.0 creates new opportunities for analyzing data on production processes and extracting knowledge from them. With the Internet of Things, is continuously collected machine sensors to analyze health. Thanks artificial intelligence methods discrete simulation, it possible process dynamically adjust operating conditions line expected time failure-free operation or reliable work an employee. Recently, learning techniques have been used automatically adapt changes in a given environment. The paper presents various modeling actions, i.e., forecasting error-free working actions agent can perform, prediction that be selected are presented. between failures described by log-normal distribution. asymmetric lognormal distribution much more flexible practical compared “perfectly” symmetric normal In practice, distribution, strongly shifted left, describe decreasing due human error, as well third phase its life cycle, which decreases ages components wear out. parameters estimated using maximum-likelihood approach, theempirical moments renewal-theory empirical function method based coefficient variation. Numerical examples predicting times results assuming exponential, Weibull distributions. also with example simplest method.

Язык: Английский

Процитировано

0

Dueling double deep Q-network-based stamping resources intelligent scheduling for automobile manufacturing in cloud manufacturing environment DOI
Yanjuan Hu, Leiting Pan, Ziang Wen

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(7)

Опубликована: Апрель 15, 2025

Язык: Английский

Процитировано

0

Dynamic scheduling for flexible job-shop with reconfigurable manufacturing cells considering dynamic job arrivals based on deep reinforcement learning DOI
Liang Zheng, Xiaodi Chen, Cunbo Zhuang

и другие.

International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 33

Опубликована: Май 2, 2025

Язык: Английский

Процитировано

0