China Classical Poetry Art Song Market Trend Forecast and Big Data Analysis in Music Industry DOI Open Access
Keke Chen,

Baowen Yang,

Liang Chen

и другие.

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract In view of the fact that Chinese classical poetry and art songs are more widely welcomed in people’s entertainment lives, article conducts research on its market development trend. The PSO-Prophet-LSTM combined prediction model is constructed by combining Prophet LSTM neural network optimizing with PSO algorithm. model’s performance was tested this paper it used to predict music industry songs. achieved best results terms comparison adaptation, LOSS, RMSE convergence curves accuracy. next five years, total output value expanded from RMB 465 billion 2024 986 2028. capital preservation rate, profit tax rate value, all keep growing over years. size songs, segment expands overall industry.

Язык: Английский

Explainable deep learning hybrid modeling framework for total suspended particles concentrations prediction DOI
Sujan Ghimire, Ravinesh C. Deo, Ningbo Jiang

и другие.

Atmospheric Environment, Год журнала: 2025, Номер unknown, С. 121079 - 121079

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Enhanced forecasting method for realized volatility of energy futures prices: A secondary decomposition-based deep learning model DOI
Hao Gong, H. Y. Xing,

Qianwen Wang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110321 - 110321

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

Half-hourly electricity price prediction model with explainable-decomposition hybrid deep learning approach DOI Creative Commons
Sujan Ghimire, Ravinesh C. Deo, Konstantin Hopf

и другие.

Energy and AI, Год журнала: 2025, Номер unknown, С. 100492 - 100492

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Multi-objective electric-carbon synergy optimisation for electric vehicle charging: Integrating uncertainty and bounded rational behaviour models DOI

Guangchuan Liu,

Bo Wang, Tong Li

и другие.

Applied Energy, Год журнала: 2025, Номер 389, С. 125790 - 125790

Опубликована: Март 30, 2025

Язык: Английский

Процитировано

0

Deep learning for anomaly detection in traditional Tibetan timber structures: A VAE-based model with multi-head attention and LSTM encoding and state-based thresholding DOI

Xiangfei Qian,

Na Yang

Structures, Год журнала: 2025, Номер 77, С. 109092 - 109092

Опубликована: Май 9, 2025

Язык: Английский

Процитировано

0

Model run monitoring and parameter modification methods DOI Open Access

Jichen Chen

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract The stability and safety of industrial process operations have a decisive impact on the high-quality development economy industry. However, traditional model is difficult to adapt increasingly complex production process. In this paper, based probabilistic linear discriminant analysis model, we construct fault monitoring for operation, through kernel density estimation, judge whether statistical indexes exceed control limit so as determine operation system has fault. Using genetic algorithm, parameters are optimized modified find optimal value model. performance its practical application were analyzed Tennessee-Istman process, effect parameter modification was investigated. experiments indicate that KPLDA model’s improves ability recognize faults with smaller amplitude, only three minor errors, provides more accurate reporting data samples. prediction range basically overlapped actual measurements until sample point 80, trend gray score values above 0.95 in points 120-200 differed slightly from measurements, better results overall.

Язык: Английский

Процитировано

0

China Classical Poetry Art Song Market Trend Forecast and Big Data Analysis in Music Industry DOI Open Access
Keke Chen,

Baowen Yang,

Liang Chen

и другие.

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract In view of the fact that Chinese classical poetry and art songs are more widely welcomed in people’s entertainment lives, article conducts research on its market development trend. The PSO-Prophet-LSTM combined prediction model is constructed by combining Prophet LSTM neural network optimizing with PSO algorithm. model’s performance was tested this paper it used to predict music industry songs. achieved best results terms comparison adaptation, LOSS, RMSE convergence curves accuracy. next five years, total output value expanded from RMB 465 billion 2024 986 2028. capital preservation rate, profit tax rate value, all keep growing over years. size songs, segment expands overall industry.

Язык: Английский

Процитировано

0