Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111663 - 111663
Опубликована: Дек. 1, 2024
Язык: Английский
Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111663 - 111663
Опубликована: Дек. 1, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 148, С. 110427 - 110427
Опубликована: Март 8, 2025
Язык: Английский
Процитировано
2Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 144, С. 110137 - 110137
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
1Journal of Hazardous Materials Advances, Год журнала: 2025, Номер 17, С. 100604 - 100604
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
1Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(6), С. 5759 - 5773
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
4Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(2)
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0Engineering Failure Analysis, Год журнала: 2025, Номер unknown, С. 109503 - 109503
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0AI in Civil Engineering, Год журнала: 2025, Номер 4(1)
Опубликована: Март 10, 2025
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
0Frontiers in Environmental Science, Год журнала: 2025, Номер 13
Опубликована: Апрель 24, 2025
Introduction Soil erosion is a critical issue faced by many regions around the world, especially in purple soil hilly areas. Rainfall and slope, as major driving factors of erosion, pose significant challenge quantifying their impact on hillslope runoff sediment yield. While existing studies have revealed effects rainfall intensity slope comprehensive analysis interactions between different types still lacking. To address this gap, study, based machine learning methods, explores type, amount, maximum 30-min (I30), depth (H) erosion-induced yield (S), unveils among these factors. Methods The K-means clustering algorithm was used to classify 43 events into three types: A-type, B-type, C-type. A-type characterized long duration, large amounts, moderate intensity; B-type short small high C-type intermediate B-type. Random Forest (RF) employed assess impacts yield, along with feature importance analysis. Results results show that amount has most Under types, ranking I30 H S follows: (C>A>B), (A>B>C). follows trend first increasing then decreasing, varying degrees influence depending type. Discussion novelty study lies combining techniques systematically evaluate, for time, type This research not only provides theoretical basis control but also offers scientific support precise prediction management conservation measures regions.
Язык: Английский
Процитировано
0Vehicles, Год журнала: 2025, Номер 7(2), С. 38 - 38
Опубликована: Апрель 28, 2025
The latest developments in Advanced Driver Assistance Systems (ADAS) have greatly enhanced the comfort and safety of drivers. These technologies can identify driver abnormalities like fatigue, inattention, impairment, which are essential for averting collisions. One important aspects this technology is automated traffic accident detection prediction, may help saving precious human lives. This study aims to explore critical features related prevention. A public US dataset was used aforementioned task, where various machine learning (ML) models were applied predict accidents. ML included Random Forest, AdaBoost, KNN, SVM. compared their accuracies, Forest found be best-performing model, providing most accurate reliable classification accident-related data. Owing black box nature models, best-fit model executed with explainable AI (XAI) methods such as LIME permutation importance understand its decision-making given task. unique aspect introduction artificial intelligence enables us human-interpretable awareness how operate. It provides information about inner workings directs improvement feature engineering detection, more dependable. analysis identified features, including sources, descriptions weather conditions, time day (weather timestamp, start time, end time), distance, crossing, signals, significant predictors probability an occurring. Future ADAS development anticipated impacted by study’s conclusions. adjusted different driving scenarios identifying comprehending dynamics make sure that systems precise, reliable, suitable real-world circumstances.
Язык: Английский
Процитировано
0