Development of Robust Machine Learning Models for Predicting Flexural Strengths of Fiber-Reinforced Polymeric Composites DOI Creative Commons
Abdulhammed K. Hamzat, Umar Salman, Md Shafinur Murad

и другие.

Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100385 - 100385

Опубликована: Янв. 1, 2025

Язык: Английский

Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete DOI Creative Commons
Farzin Kazemi, Torkan Shafighfard, Robert Jankowski

и другие.

Archives of Civil and Mechanical Engineering, Год журнала: 2024, Номер 25(1)

Опубликована: Ноя. 12, 2024

Abstract Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO 2 is produced throughout the cement-making process, which in contrary to current worldwide trend lowering emissions and conserving energy, thus restricting further advancement UHPC. Considering climate change sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following emergence advanced prediction techniques aimed at reducing experimental tools labor costs, this study provides comparative different methods based on machine learning (ML) algorithms propose an active learning-based ML model (AL-Stacked ML) for predicting compressive strength AA-UHPC. A data-rich framework containing 284 datasets 18 input parameters was collected. comprehensive evaluation significance features that may affect AA-UHPC performed. Results confirm AL-Stacked ML-3 with accuracy 98.9% can be used general specimens, been tested research. Active improve up 4.1% enhance Stacked models. In addition, graphical user interface (GUI) introduced validated by tests facilitate comparable prospective studies predictions.

Язык: Английский

Процитировано

20

Grey wolf optimizer integrated within boosting algorithm: Application in mechanical properties prediction of ultra high-performance concrete including carbon nanotubes DOI
Aybike Özyüksel Çiftçioğlu, Farzin Kazemi, Torkan Shafighfard

и другие.

Applied Materials Today, Год журнала: 2025, Номер 42, С. 102601 - 102601

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

16

RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials DOI
Farzin Kazemi, Aybike Özyüksel Çiftçioğlu, Torkan Shafighfard

и другие.

Computers & Structures, Год журнала: 2025, Номер 308, С. 107657 - 107657

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

15

Machine Learning-Assisted Prediction of Durability Behavior in Pultruded Fiber-Reinforced Polymeric (PFRP) Composites DOI Creative Commons
Ammar A. Alshannaq, Mohammad F. Tamimi, Muˈath I. Abu Qamar

и другие.

Results in Engineering, Год журнала: 2025, Номер 25, С. 104198 - 104198

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

4

Transfer learning framework for modelling the compressive strength of ultra-high performance geopolymer concrete DOI

Ho Anh Thu Nguyen,

Duy Hoang Pham, Anh Tuấn Lê

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 459, С. 139746 - 139746

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite DOI
Mehmet Emin TABAR, Metin Katlav, Kâzım Türk

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112028 - 112028

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Performance optimisation and predictive modelling of rice husk ash recycled concrete under the coupled action of freeze-thaw cycles and chloride erosion: Experimental study and machine learning DOI
Wei Zhang, Zhenhua Duan, Chao Liu

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 481, С. 141467 - 141467

Опубликована: Май 4, 2025

Язык: Английский

Процитировано

2

Filament geometry control of printable geopolymer using experimental and data driven approaches DOI Creative Commons
Ali Rezaei Lori, Mehdi Mehrali

Construction and Building Materials, Год журнала: 2025, Номер 461, С. 139853 - 139853

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Machine Learning Techniques for Estimating High–Temperature Mechanical Behavior of High Strength Steels DOI Creative Commons
Cüneyt Yazıcı, F. J. Domínguez-Gutiérrez

Results in Engineering, Год журнала: 2025, Номер 25, С. 104242 - 104242

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

1

A review on properties and multi-objective performance predictions of concrete based on machine learning models DOI

Bowen Ni,

Md Zillur Rahman, Shuaicheng Guo

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112017 - 112017

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1