
Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100385 - 100385
Опубликована: Янв. 1, 2025
Язык: Английский
Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100385 - 100385
Опубликована: Янв. 1, 2025
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 150, С. 110544 - 110544
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
1Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
1Materials Today Communications, Год журнала: 2024, Номер unknown, С. 110813 - 110813
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
9Buildings, Год журнала: 2024, Номер 14(11), С. 3660 - 3660
Опубликована: Ноя. 18, 2024
This study investigates environmentally friendly high-performance concrete (HPC) by partially replacing cement and silica sand with zeolite powder. The replacement levels included 10%, 20%, 30% for up to 50% sand. optimal mix achieved 85 MPa compressive strength, 6 tensile 7.8 flexural strength a replacement, reducing the carbon footprint approximately 659.72 kg CO2/m3. These findings demonstrate potential of powder enhance sustainability in HPC without compromising essential mechanical properties, promoting eco-friendly practices construction.
Язык: Английский
Процитировано
8Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04384 - e04384
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112466 - 112466
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1Materials, Год журнала: 2024, Номер 17(18), С. 4533 - 4533
Опубликована: Сен. 15, 2024
Machine learning and response surface methods for predicting the compressive strength of high-strength concrete have not been adequately compared. Therefore, this research aimed to predict (HSC) using different methods. To achieve purpose, neuro-fuzzy inference systems (ANFISs), artificial neural networks (ANNs), methodology (RSM) were used as ensemble Using an ANN ANFIS, output was modeled optimized a function five independent variables. The RSM designed with three input variables: cement, fine coarse aggregate. facilitate data entry into Design Expert, model divided six groups, p-values responses 1 6 0.027, 0.010, 0.003, 0.023, 0.002, 0.026. following metrics evaluate projection: R, R2, MSE ANFIS modeling; Adj. Pred. R2 modeling. Based on data, it can be concluded that (R = 0.999, 0.998, 0.417), 0.981 0.963), 0.962, 0.926, 0.655) good chance accurately (HSC). Furthermore, there is strong correlation between ANN, RSM, models experimental data. Nevertheless, network demonstrates exceptional accuracy. sensitivity analysis shows cement aggregate most significant effect (45.29% 35.87%, respectively), while superplasticizer has least (0.227%). RSME values in 0.313 0.453 during test process 0.733 0.563 training process. Thus, found both presented better results higher accuracy construction materials.
Язык: Английский
Процитировано
6Results in Engineering, Год журнала: 2024, Номер 24, С. 103110 - 103110
Опубликована: Окт. 11, 2024
Язык: Английский
Процитировано
4Materials Today Communications, Год журнала: 2024, Номер unknown, С. 110759 - 110759
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
4Results in Engineering, Год журнала: 2024, Номер unknown, С. 103421 - 103421
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
4