International Journal of Financial Studies,
Год журнала:
2024,
Номер
12(3), С. 88 - 88
Опубликована: Сен. 3, 2024
Purpose.
The
purpose
of
this
research
is
to
propose
a
tool
for
designing
microcredit
risk
pricing
strategy
borrowers
microfinance
institutions
(MFIs).
Design/methodology/approach.
Considering
the
specific
characteristics
borrowers,
we
first
estimate
and
measure
through
default
probability,
applying
parametric
technique
such
as
logistic
regression
non-parametric
based
on
an
artificial
neural
network,
looking
model
with
highest
predictive
power.
Secondly,
Basel
III
internal
ratings-based
(IRB)
approach,
use
credit
measurement
each
borrower
design
that
sets
interest
rates
according
risk.
Findings.
paper
demonstrates
probability
more
accurately
adjusted
using
network.
Furthermore,
our
results
suggest
that,
given
profitability
target
MFI,
rate
clients
lower
level
should
be
than
standard,
fixed
achieve
target.
Practical
implications.
This
allows
us,
one
hand,
assess
minimize
losses
in
MFIs
and,
secondly,
promote
their
competitiveness
by
reducing
rates,
capital
requirements,
losses,
favoring
financial
self-sustainability
these
institutions.
Social
Our
findings
have
potential
make
fairer
equitable
lending
practices
providing
risk-adjusted
pricing.
can
contribute
government
policies
aimed
at
promoting
social
inclusion
vulnerable
people.
Originality.
personal
clients,
mainly
reputation
moral
solvency,
are
crucial
behavior
borrowers.
These
factors
impact
microcredit.
Jurnal Bisnis dan Komunikasi Digital,
Год журнала:
2025,
Номер
2(2), С. 21 - 21
Опубликована: Фев. 14, 2025
The
rapid
integration
of
big
data
and
artificial
intelligence
(AI)
is
fundamentally
reshaping
Indonesia’s
financial
sector,
driving
unprecedented
efficiency,
innovation,
inclusion.
As
Southeast
Asia’s
largest
digital
economy,
Indonesia
has
embraced
fintech
solutions
that
leverage
predictive
analytics,
machine
learning,
automation
to
enhance
risk
management,
streamline
transactions,
expand
services
previously
underserved
populations.
This
transformation
aligns
with
global
trends,
yet
it
presents
distinct
regulatory,
infrastructural,
ethical
challenges.
Drawing
from
Schumpeter’s
Innovation
Theory,
Information
Asymmetry
Transaction
Cost
Economics,
this
study
explores
how
AI
redefine
operations,
improve
decision-making,
reduce
market
inefficiencies
in
the
Indonesian
banking
ecosystem.
Utilizing
a
qualitative
phenomenological
approach,
research
synthesizes
insights
industry
experts,
regulatory
bodies,
analysts
assess
implications
data-driven
strategies.
Findings
reveal
while
optimizes
assessment,
fraud
detection,
customer
segmentation,
hurdles,
cybersecurity
risks,
literacy
gaps
remain
key
barriers
sustainable
adoption.
continues
its
trajectory
toward
data-centric
infrastructure,
balancing
technological
advancement
prudence
will
be
critical
shaping
an
inclusive
resilient
future.
contributes
ongoing
discourse
on
intersection
digitalization,
economic
policy,
deployment
emerging
markets.
Revista Catarinense da Ciência Contábil,
Год журнала:
2025,
Номер
24, С. e3526 - e3526
Опубликована: Фев. 18, 2025
O
risco
de
crédito
tem
desempenhado
um
papel
central
em
várias
crises
financeiras
globais
nas
últimas
três
décadas.
cenário
financeiro,
cada
vez
mais
complexo
e
interconectado,
faz
com
que
o
gerenciamento
se
torne
fundamental
para
a
estabilidade
crescimento
das
instituições
financeiras.
Este
estudo
caso
como
objetivo
analisar
utilização
aprendizado
máquina,
especificamente
algoritmo
Gradient
Boosting
Decision
Tree
(GBDT),
modelo
preditivo,
combina
variáveis
não
significantes
utiliza
as
consultas
aos
bureaus
na
gestão
pelo
Banco
BS2,
intuito
adquirir
maior
acurácia
tomada
decisões
melhorias
mitigação
riscos.
A
métrica
F1,
utilizada
parâmetro
demonstrar
precisão
do
modelo,
comparada
da
Serasa,
apresenta
índice
superior,
0,77.
capacidade
monitoramento
contínuo
oferecida
por
esse
preditivo
proporcionado
ao
desde
2022,
uma
visão
tempo
real
saúde
financeira
sua
base
clientes,
ajudando
implementação
políticas
assertivas.
taxa
inadimplência
Pessoa
Jurídica
registrada
BCB-CADOC
(2024),
mostrado
decrescente
após
novo
baseado
no
GBDT.
contribui
promoção
inovação
competitividade
financeiras,
incentivando
transparência
fortalecendo
confiança
investidores,
stakeholders
reguladores,
Central,
adotar
ferramentas
Inteligência
Artificial
(IA)
detectam
precocemente
riscos
previnem
sistêmicas.
FinTech,
Год журнала:
2025,
Номер
4(2), С. 14 - 14
Опубликована: Апрель 2, 2025
Initially
designed
as
an
automated
ledger
tool,
Excel
swiftly
evolved
into
a
data
analytics
platform
for
financial
analysts
to
execute
intricate
analyses.
is
so
commonplace
in
the
industry
that
many
do
not
even
consider
it
fintech
tool.
The
transformation
of
from
simple
tool
low-code
machine
learning
(mL)
traditional
focus
fintech.
mL
will
let
and
quantitative
analyses
quickly
evolve
models
use
advanced
techniques.
interface
lets
build
predictive
models.
This
paper
explores
how
has
applications
along
with
risks
associated
Excel’s
new
functionality.
Revista Inovação Projetos e Tecnologias,
Год журнала:
2025,
Номер
13(1), С. e27432 - e27432
Опубликована: Апрель 4, 2025
A
gestão
financeira
desempenha
um
papel
fundamental
na
estabilidade
e
no
crescimento
das
empresas.
categorização
inadequada
de
despesas
fluxo
caixa
pode
acarretar
consequências
negativas,
como
relatórios
financeiros
imprecisos,
dificuldades
previsão
do
problemas
identificação
áreas
com
custos
excessivos
ou
ineficientes
(Silva
Navarro
&
Valverde,
2023).
O
objetivo
deste
relato
técnico
é
apresentar
a
aplicação
uma
ferramenta
desenvolvida
base
em
técnicas
machine
learning
para
resolver
o
problema
da
incorreta
planilha
empresa
familiar
alagoana
setor
varejista
artigos
armarinhos.
método
adotado
foi
pesquisa-ação,
que,
ambiente
organizacional,
busca
frequentemente
solucionar
natureza
técnica.
Devido
às
inconsistências
nas
categorias
atribuídas
manualmente
pelos
funcionários,
solução
utilizando
bibliotecas
Python
análise
texto
classificação
dados.
Modelos
Regressão
Logística
Random
Forest
foram
aplicados
automatizar
correção
categorias.
Como
resultado,
dessas
permitiu
melhora
precisão
despesas,
alcançando
acurácia
94%
modelo
Forest.
Este
estudo
evidencia
eficácia
integração
processos
financeiros,
demonstrando
essas
tecnologias
podem
contribuir
maior
eficiência,
reduzindo
erros
otimizando
empresarial.
Maliye Finans Yazıları,
Год журнала:
2025,
Номер
123, С. 14 - 34
Опубликована: Апрель 1, 2025
This
study
examines
how
board
structure
influences
market
sensitivity,
measured
by
Beta,
in
software
companies
listed
on
the
NASDAQ
Global
Select
Market.
Focusing
governance
metrics
such
as
size,
meeting
frequency,
and
executive
compensation,
research
analyzes
their
impact
Beta
from
2014
to
2023.
Machine
learning
models,
including
Decision
Trees
Bagging
Classifiers,
evaluate
this
relationship,
using
accuracy,
precision,
recall,
F1
scores.
Findings
suggest
that
factors
significantly
affect
offering
valuable
insights
for
corporate
leaders
investors
managing
firm
risk
volatile
sectors
like
software.
Mathematics,
Год журнала:
2025,
Номер
13(9), С. 1473 - 1473
Опубликована: Апрель 30, 2025
Under
the
rapid
evolution
of
financial
technology,
traditional
credit
risk
management
paradigms
relying
on
expert
experience
and
singular
algorithmic
architectures
have
proven
inadequate
in
addressing
complex
decision-making
demands
arising
from
dynamically
correlated
multidimensional
factors
heterogeneous
data
fusion.
This
manuscript
proposes
an
enhanced
rating
model
based
improved
TabNet
framework.
First,
Kaggle
“Give
Me
Some
Credit”
dataset
undergoes
preprocessing,
including
balancing
partitioning
into
training,
testing,
validation
sets.
Subsequently,
architecture
is
refined
through
integration
a
multi-head
attention
mechanism
to
extract
both
global
local
feature
representations.
Bayesian
optimization
then
employed
accelerate
hyperparameter
selection
automate
parameter
search
for
TabNet.
To
further
enhance
classification
predictive
performance,
stacked
ensemble
learning
approach
implemented:
serves
as
extractor,
while
XGBoost
(Extreme
Gradient
Boosting),
LightGBM
(Light
Boosting
Machine),
CatBoost
(Categorical
KNN
(K-Nearest
Neighbors),
SVM
(Support
Vector
Machine)
are
selected
base
learners
first
layer,
with
acting
meta-learner
second
layer.
The
experimental
results
demonstrate
that
proposed
TabNet-based
outperforms
benchmark
models
across
multiple
metrics,
accuracy,
precision,
recall,
F1-score,
AUC
(Area
Curve),
KS
(Kolmogorov–Smirnov
statistic).
Ekonomika,
Год журнала:
2025,
Номер
104(2), С. 78 - 94
Опубликована: Май 14, 2025
This
study
aims
to
significantly
enhance
the
predictive
modeling
of
credit
risk
within
Egypt’s
banking
sector,
particularly
by
differentiating
between
retail
and
corporate
risks
categorizing
banks
into
listed
non-listed
groups.
By
utilizing
a
comprehensive
dataset
from
Middle
Eastern
countries
spanning
2011
2023,
research
applies
advanced
machine
learning
techniques,
including
Random
Forest
algorithm,
refine
model.The
novelty
this
lies
in
its
detailed
exploration
determinants
specific
Egyptian
providing
valuable
insights
emerging
economies.
A
distinction
various
types
bank
classifications
is
made.
The
findings
reveal
that
bank-specific
factors
–
such
as
asset
size,
operating
efficiency,
liquidity,
income
diversification,
capital
adequacy
are
more
significant
predictors
than
macroeconomic
indicators.
trend
holds
for
both
banks,
thus
highlighting
importance
internal
metrics.Moreover,
algorithm
demonstrates
high
accuracy
rate
predicting
exposures,
which
underscores
effectiveness
financial
settings.
analysis
indicates
variations
other
characteristics
crucial
influencing
risks.
These
suggest
prioritizing
metrics
could
lead
effective
management
strategies
relying
solely
on
external
economic
conditions.Ultimately,
study’s
model
expected
assessment
capabilities,
strengthening
positions
fostering
growth
region.
bridging
gap
theoretical
understanding
practical
application,
offers
novel
perspective
tailored
unique
context
sector.
ATESTASI Jurnal Ilmiah Akuntansi,
Год журнала:
2024,
Номер
7(2), С. 1186 - 1213
Опубликована: Авг. 14, 2024
This
research
delves
into
the
intricate
dynamics
of
financial
risks—specifically
credit,
market,
and
operational
risks—within
banking,
investment,
corporate
sectors,
with
a
focus
on
both
global
Indonesian
contexts.
By
examining
key
factors
contributing
to
credit
risk,
impact
market
volatility
stability,
risks
associated
digital
transformation
sector,
study
seeks
offer
comprehensive
analysis
that
is
theoretically
robust
practically
relevant.
employs
qualitative
systematic
literature
review
(SLR)
explore
within
focusing
The
SLR
process
includes
formulating
questions,
identifying
screening
relevant
from
databases
like
Scopus
Google
Scholar,
synthesizing
findings
themes:
risk
dynamics,
volatility,
in
age,
integrated
management.
provides
management
Indonesia
perspectives.
reveals
digitalization
has
significant
enhancing
efficiency
but
also
increasing
vulnerability
cybersecurity
threats
disruptions.
underscores
need
for
frameworks
address
technology-driven
challenges.
highlights
importance
improving
disclosure
transparency,
which
can
positively
influence
Liquidity
identified
as
having
greater
short-term
stability
than
necessitating
proactive
liquidity
strategies.
Technological
innovations
finance
are
found
correlate
increased
risks,
including
failures
threats,
must
be
carefully
managed.
examines
platform-based
financing
models
investment
In
Indonesia,
banking
sector
faces
distinct
challenges
due
high
concentration
systemic
shocks,
well
rapid
transformation.
emphasizes
necessity
institutions
implement
measures,
maintain
resilient
IT
infrastructure,
utilize
advanced
monitoring
tools
these
emerging
risks.
stresses
adopting
account
interdependencies
between
globalized
market.