A channel-independent network based on wavelet enhancement for long-term time series forecasting DOI

Zhigen Huang,

Fan Zhang, Yepeng Liu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110964 - 110964

Опубликована: Май 10, 2025

Язык: Английский

Frequency slice graph spectrum model and its application in bearing fault feature extraction DOI
Kun Zhang, Yanlei Liu, Long Zhang

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 226, С. 112383 - 112383

Опубликована: Янв. 22, 2025

Язык: Английский

Процитировано

7

Fault diagnosis of rotating machinery with high-dimensional imbalance samples based on wavelet random forest DOI
Zhen Guo, Wenliao Du, Chuan Li

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 116936 - 116936

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

A noise reduction method for rolling bearing based on improved Wiener filtering DOI
Mingyue Yu, Jingwen Su, Yan Wang

и другие.

Review of Scientific Instruments, Год журнала: 2025, Номер 96(2)

Опубликована: Фев. 1, 2025

To accurately identify compound faults of bearings, a new noise reduction method is presented. With the method, input signals and order Wiener filtering are adaptively determined according to feature mode decomposition (FMD), signal evaluation index, Euclidean distance. First, effectively separate frequency components from vibration signals, decomposed into modal based on FMD algorithm; second, kurtosis, root mean square, variance, which sensitive fault information, selected build vectors. Third, distance between vectors component original calculated represent correlation among signals. By acquiring two that have greatest least an actual mixed required by can be determined. Furthermore, with maximum kurtosis as criterion. Finally, features extracted through spectral analysis after type judged that. demonstrate accuracy effectiveness proposed compared classical method. The result comparison shows presented restrict more determine complex bearings accurately.

Язык: Английский

Процитировано

1

Bearing Fault Diagnosis Grounded in the Multi-Modal Fusion and Attention Mechanism DOI Creative Commons
Jianjian Yang, Haifeng Han,

Xuan Dong

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1531 - 1531

Опубликована: Фев. 3, 2025

This paper proposes a novel method called Fusion Attention Network for Bearing Diagnosis (FAN-BD) to address the challenges in effectively extracting and fusing key information from current vibration signals traditional methods. The research is validated using public dataset Vibration, Acoustic, Temperature, Motor Current Dataset of Rotating Machines under Varying Operating Conditions Fault Diagnosis. first converts into two-dimensional grayscale images, extracts local features through multi-layer convolutional neural networks, captures global self-attention mechanism Vision Transformer (ViT). Furthermore, it innovatively introduces Channel-Based Multi-Head (CBMA) efficient fusion different modalities, maximizing complementarity between signals. experimental results show that compared mainstream algorithms such as Transformer, Swin ConvNeXt, achieves higher accuracy robustness fault diagnosis tasks, providing an reliable solution bearing diagnosis.The proposed model outperforms ViT, CBMA-ViT terms classification accuracy, achieving 97.5%. comparative clearly demonstrate yields significant improvements outcomes.

Язык: Английский

Процитировано

0

Markov model based circular frequency feature extraction method for electronic communication signal anti-jamming DOI Open Access
Yang Lei

Applied Mathematics and Nonlinear Sciences, Год журнала: 2025, Номер 10(1)

Опубликована: Янв. 1, 2025

Abstract This paper proposes a wavelet packet thresholding noise reduction algorithm for the problem of large signal frequency deviation and timing error caused by interference electronic communication signals, at same time researches spectral overlapping separation based on cyclic smoothness signal. The sets up shift filter, including portion conjugate receiving end, which facilitates using temporal correlation In order to solve feature extraction problem, discrete hidden Markov model structure is used combining characteristic intervals waveform. Simulation experiments confirm that in this has advantage lower signal-to-noise ratios, when ratio as low −15 dB, monitoring success rate matched filter about six times higher than traditional filter. comparison with SVM method BP method, completeness results paper’s reaches 95% average, accuracy always stays above 91%, extracted features have high accuracy. It shows excellent performance designed can make problems such be improved some extent.

Язык: Английский

Процитировано

0

Memory-Augmented Prototypical Meta-Learning Method for Bearing Fault Identification under Few-Sample Conditions DOI
Xianze Li,

Zhitai Xing,

Ling Xiang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129996 - 129996

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

An adaptive informative band extraction method with an improved DTCWPT and impulsiveness-to-sparsity evaluation ratio for bearing diagnostics DOI
Xin Zhang, Xin Xiong, Zhongqiang Zhang

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 231, С. 112682 - 112682

Опубликована: Апрель 8, 2025

Язык: Английский

Процитировано

0

MT-CDGAT: A multi-label diagnosis model for untrained planetary gearbox compound faults based on multi-task cross dynamic graph attention networks DOI
Lixiao Cao,

Yixu Wang,

Jimeng Li

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130307 - 130307

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A Lightweight Cross-Axis Semantic Interaction Network with Receptive-Field-Based Attention for Industrial Surface Defect Detection DOI
Xuening Li, Yan Xu, Zhong Ji

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127949 - 127949

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A channel-independent network based on wavelet enhancement for long-term time series forecasting DOI

Zhigen Huang,

Fan Zhang, Yepeng Liu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110964 - 110964

Опубликована: Май 10, 2025

Язык: Английский

Процитировано

0