Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110964 - 110964
Опубликована: Май 10, 2025
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110964 - 110964
Опубликована: Май 10, 2025
Язык: Английский
Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 226, С. 112383 - 112383
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
7Measurement, Год журнала: 2025, Номер unknown, С. 116936 - 116936
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Review of Scientific Instruments, Год журнала: 2025, Номер 96(2)
Опубликована: Фев. 1, 2025
To accurately identify compound faults of bearings, a new noise reduction method is presented. With the method, input signals and order Wiener filtering are adaptively determined according to feature mode decomposition (FMD), signal evaluation index, Euclidean distance. First, effectively separate frequency components from vibration signals, decomposed into modal based on FMD algorithm; second, kurtosis, root mean square, variance, which sensitive fault information, selected build vectors. Third, distance between vectors component original calculated represent correlation among signals. By acquiring two that have greatest least an actual mixed required by can be determined. Furthermore, with maximum kurtosis as criterion. Finally, features extracted through spectral analysis after type judged that. demonstrate accuracy effectiveness proposed compared classical method. The result comparison shows presented restrict more determine complex bearings accurately.
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1531 - 1531
Опубликована: Фев. 3, 2025
This paper proposes a novel method called Fusion Attention Network for Bearing Diagnosis (FAN-BD) to address the challenges in effectively extracting and fusing key information from current vibration signals traditional methods. The research is validated using public dataset Vibration, Acoustic, Temperature, Motor Current Dataset of Rotating Machines under Varying Operating Conditions Fault Diagnosis. first converts into two-dimensional grayscale images, extracts local features through multi-layer convolutional neural networks, captures global self-attention mechanism Vision Transformer (ViT). Furthermore, it innovatively introduces Channel-Based Multi-Head (CBMA) efficient fusion different modalities, maximizing complementarity between signals. experimental results show that compared mainstream algorithms such as Transformer, Swin ConvNeXt, achieves higher accuracy robustness fault diagnosis tasks, providing an reliable solution bearing diagnosis.The proposed model outperforms ViT, CBMA-ViT terms classification accuracy, achieving 97.5%. comparative clearly demonstrate yields significant improvements outcomes.
Язык: Английский
Процитировано
0Applied Mathematics and Nonlinear Sciences, Год журнала: 2025, Номер 10(1)
Опубликована: Янв. 1, 2025
Abstract This paper proposes a wavelet packet thresholding noise reduction algorithm for the problem of large signal frequency deviation and timing error caused by interference electronic communication signals, at same time researches spectral overlapping separation based on cyclic smoothness signal. The sets up shift filter, including portion conjugate receiving end, which facilitates using temporal correlation In order to solve feature extraction problem, discrete hidden Markov model structure is used combining characteristic intervals waveform. Simulation experiments confirm that in this has advantage lower signal-to-noise ratios, when ratio as low −15 dB, monitoring success rate matched filter about six times higher than traditional filter. comparison with SVM method BP method, completeness results paper’s reaches 95% average, accuracy always stays above 91%, extracted features have high accuracy. It shows excellent performance designed can make problems such be improved some extent.
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 129996 - 129996
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 231, С. 112682 - 112682
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 130307 - 130307
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127949 - 127949
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110964 - 110964
Опубликована: Май 10, 2025
Язык: Английский
Процитировано
0