Ensemble feature selection and tabular data augmentation with generative adversarial networks to enhance cutaneous melanoma identification and interpretability DOI Creative Commons
Vanesa Gómez-Martínez, David Chushig-Muzo, Marit B. Veierød

и другие.

BioData Mining, Год журнала: 2024, Номер 17(1)

Опубликована: Окт. 30, 2024

Cutaneous melanoma is the most aggressive form of skin cancer, responsible for cancer-related deaths. Recent advances in artificial intelligence, jointly with availability public dermoscopy image datasets, have allowed to assist dermatologists identification. While feature extraction holds potential detection, it often leads high-dimensional data. Furthermore, datasets present class imbalance problem, where a few classes numerous samples, whereas others are under-represented.

Язык: Английский

XGBoost and genetic programming methods for analysing the vitreous transition of the epoxy adhesive DOI
Songbo Wang,

Yaqiong Cai,

Jun Su

и другие.

Journal of Adhesion Science and Technology, Год журнала: 2025, Номер unknown, С. 1 - 26

Опубликована: Янв. 16, 2025

Fibre-reinforced polymer (FRP) composites are increasingly favoured for strengthening existing structures due to their numerous structural benefits. Nevertheless, the performance of such technology is strongly affected by behaviour epoxy resin adhesive layer, which largely dependent on its curing conditions. This study introduces a deep learning (DL) framework that leverages eXtreme Gradient Boosting (XGBoost) and genetic programming (GP) comprehensively influence scenarios vitreous transition adhesive. An experimental dataset comprising 160 data points was used develop predictive models. The XGBoost models exhibited high accuracy both onset temperature peak tan δ temperature, achieving R2 values 0.982 0.993 unseen test set, respectively. While GP lower with 0.834 0.842, they provided explicit equations enhance interpretability DL model facilitate practical application. To make these insights accessible engineers without expertise, web-based graphical user interface software developed, incorporating all Additionally, feature assessment conducted, providing visual representations impact each output results, thus enhancing engineering applications.

Язык: Английский

Процитировано

1

Predictions of Mechanical Properties of Fiber Reinforced Concrete using Ensemble Learning Models DOI

Ningyue Su,

Shuaicheng Guo,

Caijun Shi

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 98, С. 110990 - 110990

Опубликована: Окт. 12, 2024

Язык: Английский

Процитировано

3

Variations in viscoelastic properties of structural adhesives and strengthening performance across service scenarios DOI
Songbo Wang,

Zhuo Duan,

Siyuan Yang

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 472, С. 140846 - 140846

Опубликована: Март 23, 2025

Язык: Английский

Процитировано

0

Low-code analysis of glass transition temperatures of structural strengthening adhesives DOI
Songbo Wang,

Zhuo Duan,

Siyuan Yang

и другие.

The Journal of Adhesion, Год журнала: 2025, Номер unknown, С. 1 - 28

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0

A Bayesian-physical informed conditional tabular generative adversarial network framework for low-carbon concrete data augmentation and hyperparameter optimization DOI
Shiqi Wang, Peng Xia, Fuyuan Gong

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 152, С. 110811 - 110811

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

0

Physics-informed data-driven Bayesian network for the risk analysis of hydrogen refueling stations DOI
Jinduo Xing,

Jiaqi Qian,

Rui Peng

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 110, С. 371 - 385

Опубликована: Март 1, 2024

Язык: Английский

Процитировано

2

CTGAN in Augmentation of Radiomics Features Classification from Narrow Band Imaging for Laryngeal Cancer DOI
Haiyang Wang, Luca Mainardi

2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Год журнала: 2024, Номер unknown, С. 1 - 5

Опубликована: Июнь 26, 2024

Язык: Английский

Процитировано

1

Deep learning assisted prediction on main factors influencing shear strength of sintered nano Ag-Al joints under high temperature aging DOI
Libo Zhao, Yanwei Dai, Fei Qin

и другие.

Engineering Failure Analysis, Год журнала: 2024, Номер 167, С. 109028 - 109028

Опубликована: Ноя. 7, 2024

Язык: Английский

Процитировано

1

Genetic evolutionary deep learning for fire resistance analysis in fibre-reinforced polymers strengthened reinforced concrete beams DOI
Songbo Wang, Yanchen Fu,

Sifan Ban

и другие.

Engineering Failure Analysis, Год журнала: 2024, Номер 169, С. 109149 - 109149

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

1

Genetic Evolutionary Deep Learning for Fire Resistance Analysis in Frp-Strengthened Rc Beams DOI
Songbo Wang,

Sifan Ban,

Tim Stratford

и другие.

Опубликована: Янв. 1, 2024

Fibre Reinforced Polymers (FRPs) have become increasingly popular for strengthening concrete structures due to their structural benefits. However, a major concern with FRP-strengthened members is poor fire resistance. This study introduces genetic evolutionary deep learning (DL) approach that utilises the LightGBM algorithm, enhanced Genetic Algorithm hyperparameter optimisation, alongside Programming (GP) assess resistance performance of strengthened reinforced (RC) beams. A substantial dataset comprising 20,000 data points, derived from numerically modelled results validated through experimental studies, underpins data-driven DL analyses. The model demonstrates high predictive accuracy time and deflection at failure RC beams, R2 values 0.923 0.789, respectively. Although GP shows lower (R2 0.642 0.643), it provides explicit equations facilitate deeper understanding ease application. graphical user interface software, incorporating these two models, has been developed enable engineers apply insights in practice without requiring coding skills. Furthermore, an assessment feature influences was conducted, visually depicting impact on output results, thus enhancing interpretability engineering applications.

Язык: Английский

Процитировано

0