Engineering Fracture Mechanics, Год журнала: 2024, Номер 310, С. 110442 - 110442
Опубликована: Сен. 1, 2024
Язык: Английский
Engineering Fracture Mechanics, Год журнала: 2024, Номер 310, С. 110442 - 110442
Опубликована: Сен. 1, 2024
Язык: Английский
Composites Science and Technology, Год журнала: 2024, Номер 257, С. 110812 - 110812
Опубликована: Авг. 13, 2024
Язык: Английский
Процитировано
9Engineering Fracture Mechanics, Год журнала: 2024, Номер 306, С. 110200 - 110200
Опубликована: Май 31, 2024
Язык: Английский
Процитировано
8Engineering Failure Analysis, Год журнала: 2025, Номер 170, С. 109274 - 109274
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
1International Journal of Mechanical Sciences, Год журнала: 2024, Номер 284, С. 109771 - 109771
Опубликована: Окт. 8, 2024
Язык: Английский
Процитировано
3Journal of Alloys and Compounds, Год журнала: 2025, Номер 1017, С. 179202 - 179202
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0International Journal of Fatigue, Год журнала: 2025, Номер unknown, С. 108906 - 108906
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0International Journal of Fatigue, Год журнала: 2025, Номер unknown, С. 108915 - 108915
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Fatigue & Fracture of Engineering Materials & Structures, Год журнала: 2025, Номер unknown
Опубликована: Май 24, 2025
ABSTRACT A novel approach was proposed and implemented to assess the confidence of individual class predictions made by convolutional neural networks trained identify type fracture in metals. This involves utilizing contextual evidence form images scores, which serve as indicators for determining certainty predictions. first tested on both shallow deep employing four publicly available image datasets: MNIST, EMNIST, FMNIST, CIFAR10, subsequently validated an in‐house steel dataset—FRAC, containing ductile brittle images. The effectiveness method is producing scores data other datasets selected from datasets. CIFAR‐10 dataset yielded lowest mean score 78 model, with over 50% representative test instances receiving a below 90, indicating lower model's In contrast, CNN model used achieved 99, 0% suggesting high level its enhances interpretability provides greater insight into their outputs.
Язык: Английский
Процитировано
0Materials, Год журнала: 2024, Номер 18(1), С. 11 - 11
Опубликована: Дек. 24, 2024
Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due their effectiveness in analyzing relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML hinge heavily on numeric features as inputs, which encapsulate limited information process interest. To cure deficiency, novel model based upon convolutional neural networks is developed, where are transformed into graphical ones by introducing two enrichment operations, namely, Shapley Additive Explanations Pearson correlation coefficient analysis. Additionally, attention mechanism introduced prioritize important regions image-based inputs. Extensive validations using experimental results laser powder bed fusion-fabricated metals demonstrate that proposed possesses better predictive accuracy than conventional models.
Язык: Английский
Процитировано
2Engineering Fracture Mechanics, Год журнала: 2024, Номер 310, С. 110442 - 110442
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
0