Validation of the percolation‐based effective‐medium approximation model to estimate soil thermal conductivity DOI
Andres Patrignani, Behzad Ghanbarian, G. J. Kluitenberg

и другие.

Soil Science Society of America Journal, Год журнала: 2023, Номер 87(6), С. 1275 - 1284

Опубликована: Авг. 8, 2023

Abstract Soil thermal conductivity (λ) has broad applications in soil science, hydrology, and engineering. In this study, we applied the percolation‐based effective‐medium approximation (P‐EMA) to estimate saturation dependence of () using data from 38 undisturbed samples collected across state Kansas. The P‐EMA model four parameters including a scaling exponent ( t s ), critical water content (θ c conductivities at oven‐dry (λ dry ) full sat conditions. To curve, values λ were measured properties analyzer θ estimated as function clay content. Thermal was also Johansen model. By comparison with observations, resulted root mean square error (RMSE) ranging 0.029 0.158 W m −1 K , whereas had an RMSE 0.021 0.173 . Our results demonstrate that comparable accuracy widely used saturation‐dependent soils minimal input parameters. Future studies should focus on better understanding physical meaning improve our ability percolation principles.

Язык: Английский

Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models DOI
Reza Sarkhani Benemaran, Mahzad Esmaeili‐Falak, Akbar A. Javadi

и другие.

International Journal of Pavement Engineering, Год журнала: 2022, Номер 24(2)

Опубликована: Июль 11, 2022

Resilient modulus (MR) plays the most critical role in evaluation and design of flexible pavement foundations. MR is utilised as principal parameter for representing stiffness behaviour foundation experimental semi-empirical approaches. To determine MR, cyclic triaxial compressive experiments under different confining pressures deviatoric stresses are needed. However, such costly time-consuming. In present study, an extreme gradient boosting-based (XGB) model presented predicting resilient The optimised using four optimisation methods (particle swarm (PSO), social spider (SSO), sine cosine algorithm (SCA), multi-verse (MVO)) a database collected from previously published technical literature. outcomes that all developed designs have good workability estimating foundation, but PSO−XGB models best prediction accuracy considering both training testing datasets.

Язык: Английский

Процитировано

82

Applications of Computed Tomography (CT) in environmental soil and plant sciences DOI
Huan Zhang, Hailong He, Yanjun Gao

и другие.

Soil and Tillage Research, Год журнала: 2022, Номер 226, С. 105574 - 105574

Опубликована: Ноя. 8, 2022

Язык: Английский

Процитировано

40

A hybrid SVR-BO model for predicting the soil thermal conductivity with uncertainty DOI

K.K. Li,

Zhen‐Yu Yin, Yong Liu

и другие.

Canadian Geotechnical Journal, Год журнала: 2023, Номер 61(2), С. 258 - 274

Опубликована: Июнь 6, 2023

This study proposes a generalised framework for developing hybrid machine learning (ML) model that combines support vector regression (SVR) with hyperparameter optimisation to predict thermal conductivity ( k) uncertainty. The contains four phases: data pre-processing, determining the best-performing model, selecting optimal input combination, and uncertainty implementation. A database containing 2197 points is first compiled train ML model. Three algorithms are adopted tune hyperparameters, their performance evaluated by evaluation metrics. Results show SVR Bayesian (SVR-BO) since it produces more accurate predictions k than models employ grid random searches. Given sample insufficiency issue encountered in practice, SVR-BO 144 combinations analysed. compassion among under various indicates incorporating temperature as an additional can provide moderate improvement accuracy generalisability of Based on comparison, five-input selected best candidate implement k. demonstrate predicted possesses higher reliability denser datasets shows promising potential applications assessments.

Язык: Английский

Процитировано

23

Miscellaneous methods for determination of unfrozen water content in frozen soils DOI

Shuna Feng,

Junru Chen, Scott B. Jones

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 631, С. 130802 - 130802

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

11

Comparative analysis of seven machine learning algorithms and five empirical models to estimate soil thermal conductivity DOI Creative Commons

Tianyue Zhao,

Shuchao Liu, Jia Xu

и другие.

Agricultural and Forest Meteorology, Год журнала: 2022, Номер 323, С. 109080 - 109080

Опубликована: Июль 13, 2022

Язык: Английский

Процитировано

37

Machine learning facilitates connections between soil thermal conductivity, soil water content, and soil matric potential DOI
Xiangwei Wang,

Yanchen Gao,

Jiagui Hou

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 633, С. 130950 - 130950

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

8

A comparison between conventional and generalized fracture criteria to predict fracture parameters in clay rich rocks (Mudstone) under temperature effect DOI
Mahmoud Alneasan, Abdel Kareem Alzo’ubi, Farid Ibrahim

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 416, С. 135168 - 135168

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

5

Heat transfer characteristics and heat conductivity prediction model of waste steel slag–clay backfill material DOI
Yongjie Xu, Zhishu Yao, Xianwen Huang

и другие.

Thermal Science and Engineering Progress, Год журнала: 2023, Номер 46, С. 102203 - 102203

Опубликована: Окт. 12, 2023

Язык: Английский

Процитировано

13

Evaluating thermal conductivity of soil-rock mixtures in Qinghai-Tibet plateau based on theory models and machine learning methods DOI

Q Wang,

Ruiqiang Bai,

Zhiwei Zhou

и другие.

International Journal of Thermal Sciences, Год журнала: 2024, Номер 204, С. 109210 - 109210

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

4

An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model DOI
Weidong Zhang, Ruiqiang Bai, Xiangtian Xu

и другие.

International Communications in Heat and Mass Transfer, Год журнала: 2021, Номер 129, С. 105738 - 105738

Опубликована: Ноя. 2, 2021

Язык: Английский

Процитировано

26