Can Level-2 Firth’s Bias-reduced logistic regression be considered a robust approach for predicting landslide susceptibility? DOI
Ananta Man Singh Pradhan, Suchita Shrestha, Jisung Lee

и другие.

Bulletin of Engineering Geology and the Environment, Год журнала: 2024, Номер 84(1)

Опубликована: Дек. 28, 2024

Язык: Английский

Integration of effective antecedent rainfall to improve the performance of rainfall thresholds for landslide early warning in Wanzhou District, China DOI
Xin Liang, Samuele Segoni, Fan Wen

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105317 - 105317

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Clustered landslides induced by rainfall in Jiangwan Town, Shaoguan City, Guangdong Province, China DOI

Genlan Yang,

Longhui Zhao,

Yigen Qin

и другие.

Landslides, Год журнала: 2025, Номер unknown

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

1

Assessment of landslide susceptibility in watersheds during extreme rainfall using a complex network of slope units DOI Creative Commons
Chenlu Wang,

Jianlin Zhou,

Zhenguo Wang

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 12, 2025

Rainfall-induced landslides present significant challenges in regional landslide prediction and management. Traditional susceptibility assessment models often evaluate individual units isolation, neglecting the hydrological connections between slope within a watershed. This approach fails to account for occurrence of groups. To address this limitation, we propose "Network-based Landslide Susceptibility Assessment Model" (NLSAM). model incorporates impact water transfer using complex network integrates physically-based interactions slopes. In study, applied NLSAM watershed Fuyang District, Zhejiang Province, China. Experimental results show that extreme rainfall increases units, destabilizing more slopes elevating susceptibility. Validation demonstrate recall is 0.93, confirming model's ability identify group-occurring landslides. captures propagation paths quantifies their impacts, assisting decision-makers formulating effective management strategies.

Язык: Английский

Процитировано

1

Divergent patterns of landslide activity and triggering factors at a local scale of a single mountain massif (Island Beskid Mts., Western Carpathians, Poland) DOI
Małgorzata Wistuba, Elżbieta Gorczyca, Ireneusz Malik

и другие.

Engineering Geology, Год журнала: 2024, Номер 335, С. 107531 - 107531

Опубликована: Апрель 29, 2024

Язык: Английский

Процитировано

6

Control effect of a novel high-permeability counterfort retaining wall on rainfall-induced landslides DOI
Zhao Li, Da Huang, Yuguo Liang

и другие.

Environmental Earth Sciences, Год журнала: 2025, Номер 84(3)

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

0

Impact of root distribution patterns on the elastic deformation resistance capacity and pore water development in root reinforced soil DOI Creative Commons
Shaoyuan Lyu, Jun Li, Xiaodong Ji

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 15, 2025

Shallow soils are highly vulnerable to the combined impacts of various factors, including vehicle loading, precipitation, and groundwater. The slope soil at roadside is inevitably subjected long-term cyclic loading from traffic. Previous studies have demonstrated that ecological engineering measures can effectively mitigate deformation reduce pore water pressure development, thereby preventing erosion landslides. This study aims investigate influence root distribution patterns on elastic development trends in reinforced by simulating traffic through dynamic triaxial tests. findings demonstrate presence roots significantly enhances soil's resistance deformation. When vertical accounts for 25% (while horizontal 75%), experimental results indicate exhibits minimal slower development. Moreover, a parameter D introduced enhance existing models with increased coefficients determination, improving applicability root-reinforced soils. These provide valuable insights enhancing strength liquefaction while providing guiding research mechanical effects reinforcement restoration highway slopes.

Язык: Английский

Процитировано

0

Evolution of landslide susceptibility in the Three Gorges Reservoir area over the three decades from 1991 to 2020 DOI Creative Commons
Jiahui Dong,

Jinrong Duan,

Runqing Ye

и другие.

Geomatics Natural Hazards and Risk, Год журнала: 2025, Номер 16(1)

Опубликована: Фев. 25, 2025

Язык: Английский

Процитировано

0

Spatiotemporal analysis and threshold modeling of rainfall-induced geological disasters in Anhui Province DOI Creative Commons
Bo Wang, Jie Liu,

Gaoping Liu

и другие.

Frontiers in Earth Science, Год журнала: 2025, Номер 13

Опубликована: Апрель 17, 2025

Rainfall-induced geological disasters are widespread in the Jianghuai region of China, endangering human lives and socioeconomic activities. Anhui Province, a hotspot for these disasters, warrants thorough analysis temporal spatial distribution their correlation with rainfall effective forecasting warning. This study divides Province into Dabie Mountains, southern other areas based on different background conditions, establishes threshold warning models each. We reconstructed collection disaster precipitation records data from 2008 to 2023. Using binary logistic regression, we analyzed between factors selected optimal attenuation parameters area, determined critical levels. Results show: (1) Landslides collapses main types, mostly occurring high altitude like concentrated rainy season June - July each year; (2) Rainfall is inducer, both single heavy processes sustained influencing occurrence, through combined effect; (3) Effective significantly correlated day previous 8 days rainfall. The coefficients regions 0.60, 0.66, 0.61, respectively. shows that setting fine tuned better than province wide threshold. With 79% forecast accuracy, it can provide scientific basis meteorological risk Province.

Язык: Английский

Процитировано

0

Impact of Rainfall Dry-Wet Cycles on Slope Deformation and Landslide Prediction in Open-Pit Mines: A Case Study of Mohuandang Landslide, Emeishan, China DOI Creative Commons
Zhuoxi Zhong, Bin Hu, Jing Li

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105011 - 105011

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A simulation-enabled slope digital twin for real-time assessment of rain-induced landslides DOI

Lu-Yu Ju,

Te Xiao, Jian He

и другие.

Engineering Geology, Год журнала: 2025, Номер unknown, С. 108116 - 108116

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0