Uncertainty analysis of 3D post-failure behavior in landslide and reinforced slope based on the SPH method and the random field theory
Engineering Geology,
Год журнала:
2025,
Номер
unknown, С. 108017 - 108017
Опубликована: Март 1, 2025
Язык: Английский
Investigation of morphological features and mechanical behavior of jointed limestone subjected to wet-dry cycles and cyclic shear in drawdown areas of the three Gorges Reservoir
Engineering Geology,
Год журнала:
2025,
Номер
350, С. 107990 - 107990
Опубликована: Март 2, 2025
Язык: Английский
Mitigating rainfall induced soil erosion through bio-approach: From laboratory test to field trail
Engineering Geology,
Год журнала:
2024,
Номер
unknown, С. 107842 - 107842
Опубликована: Дек. 1, 2024
Язык: Английский
Landslide-reinforcement method and its application based on jet grouting to improve sliding-soil strength
Engineering Geology,
Год журнала:
2025,
Номер
unknown, С. 107976 - 107976
Опубликована: Фев. 1, 2025
Язык: Английский
Displacement prediction and failure mechanism analysis of rainfall-induced colluvial landslides
Journal of Hydrology,
Год журнала:
2025,
Номер
unknown, С. 133361 - 133361
Опубликована: Апрель 1, 2025
Язык: Английский
A comparison of metaheuristic optimizations with automated hyperparameter tuning methods in support vector machines algorithm for predicting soil water characteristic curve
Mostafa Rastgou,
Yong He,
Ruitao Lou
и другие.
Engineering Geology,
Год журнала:
2025,
Номер
unknown, С. 108121 - 108121
Опубликована: Май 1, 2025
Язык: Английский
Validating and enhancing data-driven landslide susceptibility prediction by model explanation and MT-InSAR techniques
International Journal of Digital Earth,
Год журнала:
2025,
Номер
18(1)
Опубликована: Май 28, 2025
Язык: Английский
Thermal conductivity of bentonite-based materials: model overview and physics constrained ensemble learning predictive framework
Nuclear Engineering and Design,
Год журнала:
2025,
Номер
441, С. 114139 - 114139
Опубликована: Июнь 3, 2025
Язык: Английский
Research on a Hybrid Self-Powered Landslide Rainfall Sensor Based on Triboelectric Nanogenerators and Electromagnetic Generators
Micromachines,
Год журнала:
2025,
Номер
16(6), С. 678 - 678
Опубликована: Июнь 4, 2025
Landslide
monitoring
is
crucial
for
mitigating
landslide
disaster
risks.
However,
the
power
supply
methods
of
existing
rainfall
sensors
often
fail
to
meet
demands
practical
field
applications.
This
study
proposes
a
hybrid
self-powered
sensor
monitoring,
integrating
triboelectric
nanogenerator
(TENG)
and
an
electromagnetic
generator
(EMG).
The
TENG
module
used
while
both
EMG
modules
are
synergistically
utilized
generation.
Experimental
results
demonstrate
that
sensor’s
measurement
error
less
than
5%,
it
can
operate
stably
under
conditions
temperature
below
90
°C
humidity
90%.
Furthermore,
exhibits
generation
capabilities.
When
connected
resistors
4.3
×
108
Ω
3.6
102
Ω,
respectively,
they
output
maximum
57.5
nW
110.25
mW,
respectively.
Compared
conventional
sensors,
this
self-powered,
allowing
normal
operation
without
external
supply,
making
more
suitable
environments
prone
landslides.
Язык: Английский