
Cleaner Production Letters, Год журнала: 2025, Номер unknown, С. 100097 - 100097
Опубликована: Фев. 1, 2025
Язык: Английский
Cleaner Production Letters, Год журнала: 2025, Номер unknown, С. 100097 - 100097
Опубликована: Фев. 1, 2025
Язык: Английский
Thin-Walled Structures, Год журнала: 2025, Номер unknown, С. 113036 - 113036
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Construction and Building Materials, Год журнала: 2024, Номер 440, С. 137365 - 137365
Опубликована: Июль 15, 2024
Timber-Cardboard Sandwich (TCS) panels are an emerging class of lightweight and low cost structural composite material, made from bio-based recycled waste materials. However, there is a lack data knowledge as to their compressive behaviours, preventing application column or wall panel elements. This paper conducts experimental analytical investigations address this gap by characterising the eccentric axial performance TCS columns. Thirty columns were tested under uniaxial loading, with specimen types developed investigate influence four key design parameters: cardboard core source type thickness timber facings, slenderness ratio. Test results indicate that face crushing governing failure mechanism ultimate capacity primarily controlled facing no observable contributions core. Based on observations, models predict load-carrying lateral deflection for eccentrically-loaded columns, giving load predictions within 5% all studied types. Research findings provide valuable insights will enable be more widely used in sustainable building products.
Язык: Английский
Процитировано
4Advanced Engineering Materials, Год журнала: 2025, Номер unknown
Опубликована: Янв. 3, 2025
In this article, an in‐depth investigation into the mechanical response of novel Y‐shaped core sandwich beams under static and dynamic compressive loading conditions is presented. Utilizing deep feed‐forward neural networks (DFNNs) as primary supervised learning scheme, behavior these advanced structures predicted. The trained DFNN model demonstrates high fidelity in capturing stress–strain relationships, evidenced by close alignment predicted experimental results. Key design parameters cores are varied to understand their influence on beams’ linear, plateau, densification regions, where higher values contribute increased stiffness, prolonged plateau points. Additionally, impact rates (1, 7, 14 mm min −1 ) performance analyzed, revealing significant rate‐dependent behaviors. decision tree algorithm exhibits superior classification with a 99.79% accuracy, further validating robustness predictive model. contrast, support vector machine radial basis function shows moderate accuracy at 75.12%. Through findings, potential DFNNs modeling importance optimizing proposed.
Язык: Английский
Процитировано
0Thin-Walled Structures, Год журнала: 2025, Номер unknown, С. 112989 - 112989
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Structures, Год журнала: 2025, Номер 73, С. 108315 - 108315
Опубликована: Фев. 12, 2025
Язык: Английский
Процитировано
0Cleaner Production Letters, Год журнала: 2025, Номер unknown, С. 100097 - 100097
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0