Prediction of crippling load of I-shaped steel columns by using soft computing techniques DOI Creative Commons

Rashid Mustafa

AI in Civil Engineering, Год журнала: 2024, Номер 3(1)

Опубликована: Ноя. 14, 2024

Abstract This study is primarily aimed at creating three machine learning models: artificial neural network (ANN), random forest (RF), and k-nearest neighbour (KNN), so as to predict the crippling load (CL) of I-shaped steel columns. Five input parameters, namely length column ( L ), width flange b f thickness t web w ) height H are used compute (CL). A range performance indicators, including coefficient determination R 2 variance account factor (VAF), a-10 index, root mean square error (RMSE), absolute (MAE) deviation (MAD), assess effectiveness established models. The results show that all ML (machine learning) models can accurately load, but ANN superior: it delivers highest value = 0.998 lowest RMSE 0.008 in training phase, well 0.996 smaller 0.012 testing phase. Additional methods, rank analysis, reliability regression plot, Taylor diagram matrix employed models’ performance. index β calculated by using first-order second moment (FOSM) technique, result compared with actual value. Additionally, sensitivity analysis performed check impact variables on output (CL), finding has greatest followed , order. demonstrates techniques useful for developing a reliable numerical tool measuring It found proposed also be other kinds failures different perforated

Язык: Английский

Compressive behavior of elliptical concrete-filled steel tubular short columns using numerical investigation and machine learning techniques DOI Creative Commons
Hazem Samih Mohamed, Qiong Tang, Haytham F. Isleem

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Ноя. 6, 2024

This paper presents a non-linear finite element model (FEM) to predict the load-carrying capacity of three different configurations elliptical concrete-filled steel tubular (CFST) short columns: double tubes with sandwich concrete (CFDST), and inside inner tube, single outer tube concrete. Then, parametric analytical study was performed explore influence geometric material parameters on CFST columns. Furthermore, current investigates effectiveness machine learning (ML) techniques in predicting These include Support Vector Regressor (SVR), Random Forest (RFR), Gradient Boosting (GBR), XGBoost (XGBR), MLP (MLPR), K-nearest Neighbours (KNNR), Naive Bayes (NBR). ML models accuracy is assessed by comparing their predictions FE results. Among models, GBR XGBR exhibited outstanding results high test R2 scores 0.9888 0.9885, respectively. The provided insights into contributions individual features using SHapley Additive exPlanations (SHAP) approach. from SHAP indicate that eccentric loading ratio (e/2a) has most significant effect columns, followed yield strength ( $$\:{f}_{yo}$$ ) width $$\:2{a}_{ii}$$ ). Additionally, user interface platform been developed streamline practical application proposed ML.

Язык: Английский

Процитировано

15

Symbolic regression for strength prediction of eccentrically loaded concrete-filled steel tubular columns DOI Creative Commons
Khaled Megahed

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

2

Deep learning-based modelling of polyvinyl chloride tube-confined concrete columns under different load eccentricities DOI

Li Shang,

Haytham F. Isleem, Mostafa M. Alsaadawi

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 145, С. 110217 - 110217

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

2

Compressive behavior of high strength concrete stuffed inside aluminum tube considering bolted bonding: An experimental and numerical study DOI
Ramy I. Shahin, Sabry Fayed, Saad A. Yehia

и другие.

Structures, Год журнала: 2025, Номер 75, С. 108675 - 108675

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

1

Predicting axial load capacity in elliptical fiber reinforced polymer concrete steel double skin columns using machine learning DOI Creative Commons

F. T. S. Yu,

Haytham F. Isleem,

Walaa J K Almoghayer

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 15, 2025

The current study investigates the application of artificial intelligence (AI) techniques, including machine learning (ML) and deep (DL), in predicting ultimate load-carrying capacity strain ofboth hollow solid hybrid elliptical fiber-reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs) under axial loading. Implemented AI techniques include five ML models - Gene Expression Programming (GEP), Artificial Neural Network (ANN), Random Forest (RF), Adaptive Boosting (ADB), eXtreme Gradient (XGBoost) one DL model Deep (DNN).Due to scarcity experimental data on DSTCs, an accurate finite element (FE) was developed provide additional numerical insights. reliability proposed nonlinear FE validated against existing results. then employed a parametric generate 112 points.The examined impact concrete strength, cross-sectional size inner steel tube, FRP thickness both DSTCs.The effectiveness assessed by comparing models' predictions with results.Among models, XGBoost RF achieved best performance training testing respect determination coefficient (R2), Root Mean Square Error (RMSE), Absolute (MAE) values. provided insights into contributions individual features using SHapley Additive exPlanations (SHAP) approach. results from SHAP, based prediction model, indicate that area core has most significant effect followed unconfined strength total multiplied its elastic modulus. Additionally, user interface platform streamline practical DSTCs.

Язык: Английский

Процитировано

1

Unified machine-learning-based design method for cold-formed steel multi-limbs built-up open section columns DOI
Yan Lu,

Bin Wu,

Tianhua Zhou

и другие.

Structures, Год журнала: 2025, Номер 73, С. 108398 - 108398

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Fire resistance time prediction and optimization of cold-formed steel walls based on machine learning DOI
Kang Liu, Mingming Yu, Yaqiong Liu

и другие.

Thin-Walled Structures, Год журнала: 2024, Номер 203, С. 112207 - 112207

Опубликована: Июль 6, 2024

Язык: Английский

Процитировано

6

Regression-classification ensemble machine learning model for loading capacity and bucking mode prediction of cold-formed steel built-up I-section columns DOI
Yan Lu,

Bin Wu,

Wenchao Li

и другие.

Thin-Walled Structures, Год журнала: 2024, Номер 205, С. 112427 - 112427

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

5

Machine learning prediction of web-crippling strength in cold-formed steel beams with staggered slotted perforations DOI
Perampalam Gatheeshgar, R.S.S. Ranasinghe, Lenganji Simwanda

и другие.

Structures, Год журнала: 2024, Номер 71, С. 108079 - 108079

Опубликована: Дек. 24, 2024

Язык: Английский

Процитировано

3

Prediction of load-bearing capacity of sigma section CFS beam-column members using ensemble and deep learning algorithms DOI

Yılmaz Yılmaz,

Ferhan Öztürk,

Serhat Demi̇r

и другие.

Journal of Constructional Steel Research, Год журнала: 2025, Номер 228, С. 109458 - 109458

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

0