Journal of Alloys and Compounds, Год журнала: 2024, Номер 1010, С. 177458 - 177458
Опубликована: Ноя. 7, 2024
Язык: Английский
Journal of Alloys and Compounds, Год журнала: 2024, Номер 1010, С. 177458 - 177458
Опубликована: Ноя. 7, 2024
Язык: Английский
Advanced Energy Materials, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Abstract This review highlights recent advances in machine learning (ML)‐assisted design of energy materials. Initially, ML algorithms were successfully applied to screen materials databases by establishing complex relationships between atomic structures and their resulting properties, thus accelerating the identification candidates with desirable properties. Recently, development highly accurate interatomic potentials generative models has not only improved robust prediction physical but also significantly accelerated discovery In past couple years, methods have enabled high‐precision first‐principles predictions electronic optical properties for large systems, providing unprecedented opportunities science. Furthermore, ML‐assisted microstructure reconstruction physics‐informed solutions partial differential equations facilitated understanding microstructure–property relationships. Most recently, seamless integration various platforms led emergence autonomous laboratories that combine quantum mechanical calculations, language models, experimental validations, fundamentally transforming traditional approach novel synthesis. While highlighting aforementioned advances, existing challenges are discussed. Ultimately, is expected fully integrate atomic‐scale simulations, reverse engineering, process optimization, device fabrication, empowering system design. will drive transformative innovations conversion, storage, harvesting technologies.
Язык: Английский
Процитировано
17Journal of the Indian Chemical Society, Год журнала: 2025, Номер 102(3), С. 101582 - 101582
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
4Energy storage materials, Год журнала: 2025, Номер unknown, С. 104009 - 104009
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Energy storage materials, Год журнала: 2024, Номер 72, С. 103752 - 103752
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
9Separation and Purification Technology, Год журнала: 2024, Номер 354, С. 129423 - 129423
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
6Chemical Engineering Journal Advances, Год журнала: 2024, Номер 20, С. 100657 - 100657
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
5Hybrid Advances, Год журнала: 2024, Номер unknown, С. 100339 - 100339
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
5Chemical Physics Reviews, Год журнала: 2025, Номер 6(1)
Опубликована: Март 1, 2025
Surfaces and interfaces play key roles in chemical material science. Understanding physical processes at complex surfaces is a challenging task. Machine learning provides powerful tool to help analyze accelerate simulations. This comprehensive review affords an overview of the applications machine study systems materials. We categorize into following broad categories: solid–solid interface, solid–liquid liquid–liquid surface solid, liquid, three-phase interfaces. High-throughput screening, combined first-principles calculations, force field accelerated molecular dynamics simulations are used rational design such as all-solid-state batteries, solar cells, heterogeneous catalysis. detailed information on for
Язык: Английский
Процитировано
0Chemical Engineering Journal, Год журнала: 2025, Номер unknown, С. 161736 - 161736
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Journal of Energy Storage, Год журнала: 2025, Номер 118, С. 116290 - 116290
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
0