Research on algorithms of machine learning DOI Creative Commons

Binyan Yu,

Yuanzheng Zheng

Applied and Computational Engineering, Год журнала: 2024, Номер 39(1), С. 277 - 281

Опубликована: Фев. 20, 2024

Machine learning has endless application possibilities, with many algorithms worth in depth. Different can be flexibly applied to a variety of vertical fields, such as the most common neural network for face recognition, garbage classification, picture and other scenarios image recognition computer vision, hottest recent natural language processing recommendation different applications are from it. In field financial analysis, decision tree algorithm its derivative random forest mainstream. As well support vector machines, naive Bayes, K-nearest neighbor algorithms, so on. From traditional regression algorithm. This paper discusses principle lists some corresponding applications. Linear regression, trees, supervised learning, etc., while have been replaced by more powerful flexible methods, studying understanding these foundational depth, models better designed optimized, how they work obtained.

Язык: Английский

Review on the Application of Remote Sensing Data and Machine Learning to the Estimation of Anthropogenic Heat Emissions DOI Creative Commons
Lei Feng, Danyang Ma, Min Xie

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(2), С. 200 - 200

Опубликована: Янв. 8, 2025

Anthropogenic heat is the generated by human activities such as industry, construction, transport, and metabolism. Accurate estimates of anthropogenic are essential for studying impacts on climate atmospheric environment. Commonly applied methods estimating include inventory method, energy balance equation building model simulation method. In recent years, rapid development computer technology availability massive data have made machine learning a powerful tool fluxes assessing its effects. Multi-source remote sensing also been widely used to obtain more details spatial temporal distribution characteristics heat. This paper reviews main approaches emissions. The typical algorithms abovementioned three introduced, their advantages limitations evaluated. Moreover, progress in application discussed well. Based big techniques, research feature engineering fusion will bring about major changes analysis modeling More in-depth this issue recommended provide important support curbing global warming, mitigating air pollution, achieving national goals carbon peak neutrality strategy.

Язык: Английский

Процитировано

3

Development of Quantitative Structure Property Relationship Models and Tool for Predicting the Soil Adsorption Coefficient (logKOC) DOI
Xianhai Yang, Yue Yang, Peter L. Watson

и другие.

Environmental Pollution, Год журнала: 2025, Номер 368, С. 125703 - 125703

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

1

Exploring risk factors and their differences on suicidal ideation and suicide attempts among depressed adolescents based on decision tree model DOI
Yang Wang, J Y Liu, Siyu Chen

и другие.

Journal of Affective Disorders, Год журнала: 2024, Номер 352, С. 87 - 100

Опубликована: Фев. 13, 2024

Язык: Английский

Процитировано

5

Exploring pollutant joint effects in disease through interpretable machine learning DOI
Shuo Wang,

Tianzhuo Zhang,

Ziheng Li

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 467, С. 133707 - 133707

Опубликована: Фев. 5, 2024

Язык: Английский

Процитировано

4

Rapid non-destructive detection of pork freshness using visible-near infrared spectroscopy based on convolutional neural network hybrid models DOI
Xiaoxiao Zhao,

Wei Ning,

Ruoxin Chen

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107199 - 107199

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Carbon source dosage intelligent determination using a multi-feature sensitive back propagation neural network model DOI
Ziqi Zhou, Xiaohui Wu, Xin Dong

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124341 - 124341

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Toxicity Prediction and Risk Assessment of Industrial And Warfare Chemicals Using Machine Learning-Enhanced Qsar DOI
Seok-Hyung Bae, Jeongyun Kim, Youn Jeong Jang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

An Efficient Modern Convolution-Based Dynamic Spatiotemporal Deep Learning Architecture for Ozone Prediction DOI
Ao Li, Li Ji, Zhizhang Shen

и другие.

Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106424 - 106424

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Explainable machine learning models enhance prediction of PFAS bioactivity using quantitative molecular surface analysis-derived representation DOI
Zhipeng Yin, Min Zhang, Runzeng Liu

и другие.

Water Research, Год журнала: 2025, Номер unknown, С. 123500 - 123500

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Automatic pre-screening of outdoor airborne microplastics in micrographs using deep learning DOI Creative Commons
Sheen Mclean Cabaneros, Emma Chapman, Mark Hansen

и другие.

Environmental Pollution, Год журнала: 2025, Номер 372, С. 125993 - 125993

Опубликована: Март 14, 2025

Airborne microplastics (AMPs) are prevalent in both indoor and outdoor environments, posing potential health risks to humans. Automating the process of spotting them micrographs can significantly enhance research monitoring. Although deep learning has shown substantial promise microplastic analysis, existing studies have primarily focused on high-resolution images samples collected from marine freshwater environments. In contrast, this work introduces a novel approach by employing enhanced U-Net models (Attention Dynamic RU-NEXT) along with Mask Region Convolutional Neural Network (Mask R-CNN) identify classify AMPs lower-resolution (256 × 256 pixels) obtained A key innovation involves integrating classification directly within U-Net-based segmentation frameworks, thereby streamlining workflow improving computational efficiency which is an advancement over previous where were performed separately. The attained average F1-scores exceeding 85% scores above 77%. Additionally, R-CNN model achieved bounding box precision 73.32% test set, F1-score 84.29%, mask 71.31%, demonstrating robust performance. proposed method provides faster more accurate means identifying compared thresholding techniques. It also functions effectively as pre-screening tool, substantially reducing number particles requiring labour-intensive chemical analysis. By advanced strategies into research, study paves way for efficient monitoring characterisation microplastics.

Язык: Английский

Процитировано

0