Temporal Evolution Pathway and Forecasting of Non‐Fossil Energy Consumption and Carbon Emission Under China's Carbon Peak Target: A Markov Switching AR and RNN Approach DOI
Bei Liu, Zhaoxuan Qiu, Jiachao Peng

и другие.

Expert Systems, Год журнала: 2024, Номер unknown

Опубликована: Окт. 13, 2024

ABSTRACT To fulfil the commitments of Paris Agreement, China will strive to achieve carbon peak (CP) by 2030. It is necessary identify evolution characteristics China's emissions and provide a scientific path prediction for formulation reasonable emission reduction policies measures. This study summarises predicts pathway using intensity (CEI) percentage non‐fossil energy consumption (NEC) as indicators, combining MSIH(3)‐AR(2) model recurrent neural network. The results show that: (1) CEI experiences ‘low decline regime’ (LDR), ‘medium (MDR) ‘high (HDR), while share NEC goes through fluctuation (LFR), growth (MGR) (HGR). (2) For CEI, switching probability from MDR HDR 74.88%, illustrating substantial improvement. NEC, MGR HGR 28.92%, but returning 61.76%, indicating an adjustment. (3) By 2030, reach 0.9896 tons/100 million CNY, decreased 66.35% compared with 2005. While rise 26.61%. Based on these, policy suggestions such strengthening top‐level design, upgrading mix accelerating green technological changes are proposed break bottlenecks reaching CP further zero goal. expected theoretical support empirical evidence achievement in China, references promoting ‘dual carbon’ process other countries.

Язык: Английский

Digital Innovations Driving Urban Sustainability: Key Factors in Reducing Carbon Emissions DOI Open Access
Zhenggang Fang, Ziyang Liu

Sustainability, Год журнала: 2025, Номер 17(5), С. 2186 - 2186

Опубликована: Март 3, 2025

The digital economy is crucial in facilitating cities’ green and low-carbon transformations, balancing economic growth with environmental sustainability. However, its role mitigating urban carbon emissions remains underexplored existing research. This study examines how technologies contribute to emission reduction by integrating circular theory behavioral economics theory. Based on expert interviews a systematic literature review, the research applies Decision-Making Trial Evaluation Laboratory Interpretive Structural Modeling (DEMATEL-ISM) methodology identify 13 key factors driving transitions. findings highlight that economy-driven transformation, infrastructure development e-commerce logistics optimization are pivotal for reducing emissions. offers theoretical insights into economy’s development. It also provides practical guidance policymakers, managers businesses. These strategies can enhance energy efficiency, reduce promote ecological

Язык: Английский

Процитировано

1

Towards a low-carbon and beautiful world: assessing the impact of digital technology on the common benefits of pollution reduction and carbon reduction DOI
Yang Shen, Xiuwu Zhang

Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(8)

Опубликована: Июль 4, 2024

Язык: Английский

Процитировано

7

Information consumption city and carbon emission efficiency: Evidence from China's quasi-natural experiment DOI
Xujun Liu, Yuanqing Luo,

Shengtie Guo

и другие.

Environmental Research, Год журнала: 2024, Номер 255, С. 119182 - 119182

Опубликована: Май 19, 2024

Язык: Английский

Процитировано

5

Recent advancements on elimination of emerging contaminants by homogeneous metal-catalyzed sulfur(Ⅳ) oxidation DOI

Shijie Kuang,

Hongbin Wang,

Youlun Su

и другие.

Chemical Engineering Science, Год журнала: 2025, Номер unknown, С. 121320 - 121320

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Synergistic reduction of air pollutants and carbon emissions in Chengdu-Chongqing urban agglomeration, China: Spatial-temporal characteristics, regional differences, and dynamic evolution DOI

Shujiang Xiang,

Xianjin Huang, Nana Lin

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 144929 - 144929

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Research on the Assessment and Drivers of the Coupling Coordination Developmentbetween Green Innovation and Digital Economy DOI
Xiaomei Cai,

Xingchen Gao,

Shuxian Zheng

и другие.

Applied Spatial Analysis and Policy, Год журнала: 2025, Номер 18(2)

Опубликована: Март 29, 2025

Язык: Английский

Процитировано

0

Spatial–temporal evolution, drivers, and pathways of the synergistic effects of digital transformation on pollution and carbon reduction in heavily polluting enterprises DOI Creative Commons

Wei Mai,

Lixin Xiong,

Bo Liu

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 8, 2025

Abstract Under the “dual carbon” goals, heavily polluting enterprises face dual pressures to reduce both pollution and carbon emissions, necessitating urgent exploration of effective pathways for coordinated emission reductions. This study investigates potential digital transformation in achieve synergistic First, entropy method is employed measure enterprise digitalization pollutant levels, spatial–temporal evolution characteristics regional reductions are analyzed. Subsequently, using panel data from Yangtze River Economic Belt, examines impact on reduction, its underlying mechanisms, moderating effects environmental policies these relationships. Robustness tests confirm synergy between emissions. The findings reveal that contributes reduction emissions enterprises, primarily through two pathways: integration internal innovation resources collaborative engagement external networks. Furthermore, air control low-carbon city initiatives significantly enhance digitalization. Interestingly, located downstream regions River, those with smaller operational scales, or facing strong financing constraints, demonstrate more pronounced transformation. Based conclusions, we recommend governments focus strengthening either “pollution reduction” “carbon policies, as alone can yield benefits. Additionally, tailoring local conditions maximize economic

Язык: Английский

Процитировано

0

Quantifying Socio-Regional Variability via Factor Analysis over China: Optimizing Residential Sector Emission Reduction Pathways DOI Open Access
Zhao Yu, Prasanna Divigalpitiya

Environments, Год журнала: 2025, Номер 12(2), С. 37 - 37

Опубликована: Янв. 22, 2025

Policy synergy, the evidence-based coordination of public policies, can aid in more rapidly achieving air pollutant and carbon dioxide (CO2) emission reduction targets. Using logarithmic mean Divisia index (LMDI) decomposition, coupling degree (CCD), geographically temporally weighted regression (GTWR) models, we analyzed characteristics, drivers, pathways residential pollution across 30 Chinese provinces from 2001 to 2020. The southern produced than northern provinces, with gap widening after 2015. In sector, energy factors (LMDI decomposition result, 686,681.9) population size (14,331) had greater impacts on emissions structure, intensity, synergies, or GDP per capita. GTWR analysis CCD mechanism indicated that hydroelectricity urbanization enhanced southeast. Meanwhile, west, was improved by R&D investment, government spending industrial control, electricity consumption, capita cropland, temperature, urbanization. This provides a valuable reference for optimizing strategies.

Язык: Английский

Процитировано

0

Does digitalization facilitate pollution and carbon emissions reduction synergies?: Evidence based on Chinese A-share manufacturing companies DOI
X. E. Wang, Xiang Su

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Enhancing energy conservation and carbon emission reduction synergies through digital technology: Firm-level evidence from China DOI
Xiang Ma, Zongguo Wen, Wenxiu Li

и другие.

Energy Reports, Год журнала: 2025, Номер 13, С. 3686 - 3699

Опубликована: Март 23, 2025

Язык: Английский

Процитировано

0