
Desalination and Water Treatment, Год журнала: 2025, Номер unknown, С. 101254 - 101254
Опубликована: Июнь 1, 2025
Язык: Английский
Desalination and Water Treatment, Год журнала: 2025, Номер unknown, С. 101254 - 101254
Опубликована: Июнь 1, 2025
Язык: Английский
Environment International, Год журнала: 2025, Номер unknown, С. 109389 - 109389
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
4Sustainability, Год журнала: 2025, Номер 17(5), С. 2250 - 2250
Опубликована: Март 5, 2025
Hydrology relates to many complex challenges due climate variability, limited resources, and especially, increased demands on sustainable management of water soil. Conventional approaches often cannot respond the integrated complexity continuous change inherent in system; hence, researchers have explored advanced data-driven solutions. This review paper revisits how artificial intelligence (AI) is dramatically changing most important facets hydrological research, including soil land surface modeling, streamflow, groundwater forecasting, quality assessment, remote sensing applications resources. In AI techniques could further enhance accuracy texture analysis, moisture estimation, erosion prediction for better management. Advanced models also be used as a tool forecast streamflow levels, therefore providing valuable lead times flood preparedness resource planning transboundary basins. quality, AI-driven methods improve contamination risk enable detection anomalies, track pollutants assist treatment processes regulatory practices. combined with open new perspectives monitoring resources at spatial scale, from forecasting storage variations. paper’s synthesis emphasizes AI’s immense potential hydrology; it covers latest advances future prospects field ensure
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 14, 2025
To address the limitations of existing water quality prediction models in handling non-stationary data and capturing multi-scale features, this study proposes a hybrid model integrating Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Variational (VMD), Long Short-Term Memory Network (LSTM), Frequency-Enhanced Channel Attention (FECA). The aims to improve accuracy robustness for complex dynamics, which is critical environmental protection sustainable resource management. First, CEEMDAN Sample Entropy (SE) were used decompose raw into interpretable components filter noise. Then, VMD-enhanced LSTM architecture embedded FECA was developed adaptively prioritize frequency-specific thereby improving model's ability handle nonlinear patterns. Results show that successful predicting all six indicators: NH₃-N (ammonia nitrogen), DO (dissolved oxygen), pH, TN (total TP phosphorus), CODMn (chemical oxygen demand, permanganate method). achieved Nash-Sutcliffe Efficiency (NSE) values ranging from 0.88 0.99. Using dissolved (DO) as an example, reduced Mean Absolute Percentage Error (MAPE) by 0.12% increased coefficient determination (R2) 0.20% compared baseline methods. This work provides robust framework real-time monitoring supports decision making pollution control ecosystem
Язык: Английский
Процитировано
1Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124341 - 124341
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133584 - 133584
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 75, С. 108013 - 108013
Опубликована: Май 29, 2025
Язык: Английский
Процитировано
0Desalination and Water Treatment, Год журнала: 2025, Номер unknown, С. 101254 - 101254
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0