Particulate Matter 2.5 concentration prediction system based on uncertainty analysis and multi-model integration DOI
Yamei Chen, Jianzhou Wang, Runze Li

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 958, С. 177924 - 177924

Опубликована: Дек. 9, 2024

Язык: Английский

Modeling PM2.5 forecast using a self-weighted ensemble GRU network: Method optimization and evaluation DOI Creative Commons
Hengjun Huang,

Chonghui Qian

Ecological Indicators, Год журнала: 2023, Номер 156, С. 111138 - 111138

Опубликована: Ноя. 6, 2023

Due to the rapid industrial development and global concern about air pollution, understanding dynamics of PM2.5 concentration has become a key aspect quality prediction. Many deep learning mode decomposition techniques have been explored capture temporal nonlinear features data. However, most existing methods ignore differences in prediction losses individual subsequences, resulting lower accuracy. To address this limitation, we proposed an ensemble gated recurrent unit (GRU) model that incorporated self-weighted total loss function based on variational (VMD). In approach, series were decomposed using VMD, then each subsequence (including residual sequence) was fed into GRU predicted calculated. For output optimal predictions, used adaptively optimize for subsequence. Specifically, larger weights assigned model's subsequences with higher predictive better focus those losses. addition, hyperparameter adjusted adapt various datasets different domains. Experimental results three show our performs than VMD-GRU single models. This validates effectiveness model. Our approach advantage plug-and-play, making it easier seamlessly integrate pattern

Язык: Английский

Процитировано

20

MGAtt-LSTM: A multi-scale spatial correlation prediction model of PM2.5 concentration based on multi-graph attention DOI
Bo Zhang, Weihong Chen, Maozhen Li

и другие.

Environmental Modelling & Software, Год журнала: 2024, Номер 179, С. 106095 - 106095

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

7

Predicting ambient PM2.5 concentrations via time series models in Anhui Province, China DOI
Ahmad Hasnain, Muhammad Zaffar Hashmi, Sohaib Khan

и другие.

Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(5)

Опубликована: Апрель 30, 2024

Язык: Английский

Процитировано

5

Multi-Dimensional Distribution Prediction of PM2.5 Concentration in Urban Residential Areas Based on CNN DOI
Sihan Xia, Ruinan Zhang, Lei Zhang

и другие.

Building and Environment, Год журнала: 2024, Номер 267, С. 112167 - 112167

Опубликована: Окт. 11, 2024

Язык: Английский

Процитировано

5

TEMDI: A Temporal Enhanced Multisource Data Integration model for accurate PM2.5 concentration forecasting DOI
Ke Ren, Kangxu Chen,

Chengyao Jin

и другие.

Atmospheric Pollution Research, Год журнала: 2024, Номер 15(11), С. 102269 - 102269

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

4

The role of hybrid models in financial decision-making: Forecasting stock prices with advanced algorithms DOI Creative Commons
Xiaoyi Zhu

Egyptian Informatics Journal, Год журнала: 2025, Номер 29, С. 100610 - 100610

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

0

Deep learning and statistical approaches for area-based PM2.5 forecasting in Hat Yai, Thailand DOI Creative Commons
Kasikrit Damkliang, Jularat Chumnaul

Journal Of Big Data, Год журнала: 2025, Номер 12(1)

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

Multi-granularity PM2.5 concentration long sequence prediction model combined with spatial–temporal graph DOI
Bo Zhang, Hong Qin, Yuqi Zhang

и другие.

Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106400 - 106400

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Improved Prediction of Hourly PM2.5 Concentrations with a Long Short-Term Memory Optimized by Stacking Ensemble Learning and Ant Colony Optimization DOI Creative Commons
Zuhan Liu,

Hong Xian-ping

Toxics, Год журнала: 2025, Номер 13(5), С. 327 - 327

Опубликована: Апрель 23, 2025

To address the performance degradation in existing PM2.5 prediction models caused by excessive complexity, poor spatiotemporal efficiency, and suboptimal parameter optimization, we employ stacking ensemble learning for feature weighting analysis integrate ant colony optimization (ACO) algorithm model optimization. Combining meteorological collaborative pollutant data, a (namely stacking-ACO-LSTM model) with much shorter consuming time than that of only long short-term memory (LSTM) networks suitable concentration is established. It can effectively filter out variables higher weights, thereby reducing predictive power model. The hourly trained tested using real-time monitoring data Nanchang City from 2017 to 2019. results show established has high accuracy predicting concentration, compared same without considering space efficiency defective mean square error (MSE) decreases about 99.88%, coefficient determination (R2) increases 2.39%. This study provides new idea cities.

Язык: Английский

Процитировано

0

SDIPPWV: A novel hybrid prediction model based on stepwise decomposition-integration-prediction avoids future information leakage to predict precipitable water vapor from GNSS observations DOI

Fanming Wu,

Dengao Li, Jumin Zhao

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 933, С. 173116 - 173116

Опубликована: Май 9, 2024

Язык: Английский

Процитировано

3