The Science of The Total Environment, Год журнала: 2024, Номер 958, С. 177924 - 177924
Опубликована: Дек. 9, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 958, С. 177924 - 177924
Опубликована: Дек. 9, 2024
Язык: Английский
Ecological Indicators, Год журнала: 2023, Номер 156, С. 111138 - 111138
Опубликована: Ноя. 6, 2023
Due to the rapid industrial development and global concern about air pollution, understanding dynamics of PM2.5 concentration has become a key aspect quality prediction. Many deep learning mode decomposition techniques have been explored capture temporal nonlinear features data. However, most existing methods ignore differences in prediction losses individual subsequences, resulting lower accuracy. To address this limitation, we proposed an ensemble gated recurrent unit (GRU) model that incorporated self-weighted total loss function based on variational (VMD). In approach, series were decomposed using VMD, then each subsequence (including residual sequence) was fed into GRU predicted calculated. For output optimal predictions, used adaptively optimize for subsequence. Specifically, larger weights assigned model's subsequences with higher predictive better focus those losses. addition, hyperparameter adjusted adapt various datasets different domains. Experimental results three show our performs than VMD-GRU single models. This validates effectiveness model. Our approach advantage plug-and-play, making it easier seamlessly integrate pattern
Язык: Английский
Процитировано
20Environmental Modelling & Software, Год журнала: 2024, Номер 179, С. 106095 - 106095
Опубликована: Июнь 7, 2024
Язык: Английский
Процитировано
7Environmental Monitoring and Assessment, Год журнала: 2024, Номер 196(5)
Опубликована: Апрель 30, 2024
Язык: Английский
Процитировано
5Building and Environment, Год журнала: 2024, Номер 267, С. 112167 - 112167
Опубликована: Окт. 11, 2024
Язык: Английский
Процитировано
5Atmospheric Pollution Research, Год журнала: 2024, Номер 15(11), С. 102269 - 102269
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
4Egyptian Informatics Journal, Год журнала: 2025, Номер 29, С. 100610 - 100610
Опубликована: Янв. 11, 2025
Язык: Английский
Процитировано
0Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
0Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106400 - 106400
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Toxics, Год журнала: 2025, Номер 13(5), С. 327 - 327
Опубликована: Апрель 23, 2025
To address the performance degradation in existing PM2.5 prediction models caused by excessive complexity, poor spatiotemporal efficiency, and suboptimal parameter optimization, we employ stacking ensemble learning for feature weighting analysis integrate ant colony optimization (ACO) algorithm model optimization. Combining meteorological collaborative pollutant data, a (namely stacking-ACO-LSTM model) with much shorter consuming time than that of only long short-term memory (LSTM) networks suitable concentration is established. It can effectively filter out variables higher weights, thereby reducing predictive power model. The hourly trained tested using real-time monitoring data Nanchang City from 2017 to 2019. results show established has high accuracy predicting concentration, compared same without considering space efficiency defective mean square error (MSE) decreases about 99.88%, coefficient determination (R2) increases 2.39%. This study provides new idea cities.
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2024, Номер 933, С. 173116 - 173116
Опубликована: Май 9, 2024
Язык: Английский
Процитировано
3