Groundwater level projections for aquifers affected by annual to decadal hydroclimate variations DOI
Sivarama Krishna Reddy Chidepudi, Nicolas Masséi, Abderrahim Jardani

и другие.

Authorea (Authorea), Год журнала: 2024, Номер unknown

Опубликована: Сен. 2, 2024

In a context where anticipating future trends and long-term variations in water resources is crucial, improving our knowledge about most types of aquifer responses to climate variability change necessary. Aquifers with dominated by seasonal (marked annual cycle) or low-frequency (interannual decadal driven large-scale dynamics) may encounter different sensitivities change. We investigated this hypothesis generating groundwater level projections using deep learning models for annual, inertial (low-frequency dominated) mixed annual/low-frequency northern France from 16 CMIP6 model inputs an ensemble approach. Generated were then analysed changes variability. Generally, levels tended decrease all scenarios across the 2030-2100. The showed slightly increasing but decreasing types. As severity scenario increased, more inertial-type stations appeared be affected Focusing on confirmed observation: while significant amount less severe SSP 2-4.5 scenario, eventually slight yet statistically as increased. For almost Finally, seemed, instances, higher than historical period, without any differences between emission scenarios.

Язык: Английский

Application of the machine learning methods for GRACE data based groundwater modeling, a systematic review DOI
Vahid Nourani, Nardin Jabbarian Paknezhad, A. W. M Ng

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 25, С. 101113 - 101113

Опубликована: Фев. 10, 2024

Язык: Английский

Процитировано

11

Groundwater spring potential mapping: Assessment the contribution of hydrogeological factors DOI
Rui Zhao,

Chenchen Fan,

Alireza Arabameri

и другие.

Advances in Space Research, Год журнала: 2024, Номер 74(1), С. 48 - 64

Опубликована: Март 21, 2024

Язык: Английский

Процитировано

5

A critical review on groundwater level depletion monitoring based on GIS and data-driven models: Global perspectives and future challenges DOI Creative Commons

Md. Moniruzzaman Monir,

Subaran Chandra Sarker, Abu Reza Md. Towfiqul Islam

и другие.

HydroResearch, Год журнала: 2024, Номер 7, С. 285 - 300

Опубликована: Янв. 1, 2024

The present study aims to thoroughly review GWL depletion monitoring studies completed between 2000 and 2023 based on data-driven models GIS approaches from a global perspective. summarizes the details of reviewed papers, including location, period, time scale, key objective, input parameter, applied model, performance metrics, research gaps, limitations, rate. mean rate varied worldwide 2.9 ± 1.56 1100 33.76 mm/yr using 7.6 2.98 2046 45.27 GIS-based approaches. This assesses strength relationships various keywords analyzed co-author networks Vos-viewer. It proposes groundwater development strategy evaluated papers provide long-term solution water scarcity problem. Overall, this highlights existing gaps suggests potential future paths boost associated new knowledge increase accuracy

Язык: Английский

Процитировано

5

Advanced groundwater level forecasting with hybrid deep learning model: Tackling water challenges in Taiwan’s largest alluvial fan DOI

Yu-Wen Chang,

Wei Sun, Pu-Yun Kow

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132887 - 132887

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Application of machine learning and deep learning for predicting groundwater levels in the West Coast Aquifer System, South Africa DOI Creative Commons
Ndubuisi Igwebuike,

Moyinoluwa Ajayi,

Chukwuma Okolie

и другие.

Earth Science Informatics, Год журнала: 2024, Номер 18(1)

Опубликована: Дек. 5, 2024

Abstract Groundwater models are valuable tools to quantify the response of groundwater level hydrological stresses induced by climate variability and extraction. These strive for sustainable management balancing recharge, discharge, natural processes, with serving as a critical variable. While traditional numerical labour-intensive, machine learning deep offer data-driven alternative, from historical data predict variations. The in wells is typically recorded continuous time series essential implementing managed aquifer recharge within particular region. Machine generate approach modeling an area, there need understand if they most suitable improve model prediction. To address this objective, study evaluates two algorithms - Random Forest (RF) Support Vector (SVM); Simple Recurrent Neural Network (SimpleRNN) Long Short-Term Memory (LSTM) changes West Coast Aquifer System South Africa. Analysis regression error metrics on test dataset revealed that SVM outperformed other terms root mean square error, whereas random forest had best performance MAE. In accuracy analysis predicted levels, achieved highest MAE 0.356 m RMSE 0.372 m. concludes effective improved prediction level. Further research can incorporate more detailed geologic information area enhanced interpretation.

Язык: Английский

Процитировано

3

Ground Water Level Forecasting Using Artificial Neural Networks: An Industrial Case Study from Balasore, India DOI

Keerthi Parthipan,

G Bharathi,

A. Paventhan

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 151 - 166

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory DOI Creative Commons
Lifang Wang,

Zhengwen Jiang,

Lei Song

и другие.

Journal of Hydroinformatics, Год журнала: 2024, Номер 26(11), С. 2962 - 2979

Опубликована: Ноя. 1, 2024

ABSTRACT The performance of regional groundwater level (GWL) prediction model hinges on understanding intricate spatiotemporal correlations among monitoring wells. In this study, a graph convolutional network (GCN) with long short-term memory (LSTM) (GCN–LSTM) is introduced for GWL utilizing data from 16 wells located in the northeastern Xiangtan City, China. This designed to account both hybrid temporal dependencies and spatial autocorrelations It consists two parts: part employs GCNs extract characteristics self-similarity weight matrix an attribute wells; utilizes LSTM module capture patterns sequences, along monthly precipitation temperature data. dynamically predicts changes levels, achieving higher accuracy average compared single-well predictions using LSTM. By incorporating autocorrelations, GCN–LSTM demonstrated improvement goodness-of-fit approximately 11.21% over LSTM-based individual Its application holds significant reference value sustainable utilization development resources City.

Язык: Английский

Процитировано

2

AIRS: A QGIS plugin for time series forecasting using deep learning models DOI
Hafssa Naciri, Nizar Ben Achhab, Fatima Ezahrae Ezzaher

и другие.

Environmental Modelling & Software, Год журнала: 2024, Номер 177, С. 106045 - 106045

Опубликована: Апрель 17, 2024

Язык: Английский

Процитировано

1

A novel approach to forecast water table rise in arid regions using stacked ensemble machine learning and deep artificial intelligence models DOI

Hussam Eldin Elzain,

Osman Abdalla, Ali Al‐Maktoumi

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 640, С. 131668 - 131668

Опубликована: Июль 17, 2024

Язык: Английский

Процитировано

1

Simulation of Groundwater Levels Considering Natural and Anthropologic Factors Through Deep Learning Model DOI
Shuai Li, Lin Zhu, Huili Gong

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0