Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106433 - 106433
Опубликована: Март 1, 2025
Язык: Английский
Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106433 - 106433
Опубликована: Март 1, 2025
Язык: Английский
Water, Год журнала: 2024, Номер 16(20), С. 2882 - 2882
Опубликована: Окт. 10, 2024
Recent studies have shown the potential of transformer-based neural networks in increasing prediction capacity. However, classical transformers present several problems such as computational time complexity and high memory requirements, which make Long Sequence Time-Series Forecasting (LSTF) challenging. The contribution to series flood events using deep learning techniques is examined, with a particular focus on evaluating performance Informer model (a implementation transformer architecture), attempts address previous issues. predictive capabilities are explored compared statistical methods, stochastic models traditional networks. accuracy, efficiency well limits approaches demonstrated via numerical benchmarks relating real river streamflow applications. Using daily flow data from River Test England main case study, we conduct rigorous evaluation efficacy capturing complex temporal dependencies inherent series. analysis extended encompass diverse datasets various locations (>100) United Kingdom, providing insights into generalizability Informer. results highlight superiority over established forecasting especially regarding LSTF problem. For forecast horizon 168 days, achieves an NSE 0.8 maintains MAPE below 10%, while second-best (LSTM) only −0.63 25%, respectively. Furthermore, it observed that dependence structure series, expressed by climacogram, affects network.
Язык: Английский
Процитировано
3Atmospheric Pollution Research, Год журнала: 2025, Номер unknown, С. 102439 - 102439
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132998 - 132998
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Water Resources Management, Год журнала: 2025, Номер unknown
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
0Environmental Modelling & Software, Год журнала: 2025, Номер unknown, С. 106433 - 106433
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0