A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling DOI
Fuping Liu,

Ying Liu,

Chen Yang

и другие.

Water Resources Management, Год журнала: 2022, Номер 36(12), С. 4785 - 4797

Опубликована: Авг. 10, 2022

Язык: Английский

Challenges associated with Hybrid Energy Systems: An artificial intelligence solution DOI Creative Commons
Mohammad Reza Maghami, Arthur G.O. Mutambara

Energy Reports, Год журнала: 2022, Номер 9, С. 924 - 940

Опубликована: Дек. 20, 2022

Hybrid Energy Systems (HES) combine multiple energy sources to maximize efficiency. Due the unpredictability and dependence on weather, integrating renewable (RES) is a viable option for distributed distribution (DG). To minimize environmental impact meet increasing demand–supply gap, scientists need find alternative sources. Several studies have confirmed that HES economically in remote areas, particularly off-grid applications. Despite several improvements over past few years, existing control systems are complex, costly, less reliable, not sufficiently efficient. The purpose of this paper present most common challenges faced by stand-alone hybrid how artificial intelligence (AI) technique has improved them. AI techniques widely used HES, study addressed can solve classification, forecasting, networking, optimization, problems. This provides an overview recent history critical management, sizing, demand side storage management; additionally, we conceptual/theoretical problems, antecedents, consequences may be interest or require further research. Companies must ensure their perform effectively pay investments. Regardless system, failures defects should diagnosed repaired as soon possible. achieved system's efficiency preventing early-stage damage. Researchers project managers who work will invaluable resource.

Язык: Английский

Процитировано

38

Computer-Aided Multiclass Classification of Corn from Corn Images Integrating Deep Feature Extraction DOI Creative Commons
Kishore Bhamidipati, Ali Yaşar, Yavuz Selim Taşpınar

и другие.

Computational Intelligence and Neuroscience, Год журнала: 2022, Номер 2022, С. 1 - 10

Опубликована: Авг. 10, 2022

Corn has great importance in terms of production the field agriculture and animal feed. Obtaining pure corn seeds is quite significant for seed quality. For this reason, distinction that have numerous varieties plays an essential role marketing. This study was conducted with 14,469 images BT6470, Calipso, Es_Armandi, Hiva types licensed by BIOTEK. The classification carried out three stages. At first stage, deep feature extraction four performed pretrained CNN model SqueezeNet 1000 features were obtained each image. In second order to reduce these from SqueezeNet, separate selection processes Bat Optimization (BA), Whale (WOA), Gray Wolf (GWO) algorithms among optimization algorithms. Finally, last stages classified using machine learning methods Decision Tree (DT), Naive Bayes (NB), multi-class Support Vector Machine (mSVM), k-Nearest Neighbor (KNN), Neural Network (NN). mSVM achieved highest success 89.40%. as a result classifications through active selected (BA, WOA, GWO), 88.82%, 88.72%, 88.95%, respectively. accuracies tested stage are close other success. However, used selection, successful been fewer shorter time. results study, which inexpensive, objective, time processing types, present different perspective performance.

Язык: Английский

Процитировано

33

Optimizing compressive strength of quaternary-blended cement concrete through ensemble-instance-based machine learning DOI
Ammar Babiker, Yassir M. Abbas, M. Iqbal Khan

и другие.

Materials Today Communications, Год журнала: 2024, Номер 39, С. 109150 - 109150

Опубликована: Май 8, 2024

Язык: Английский

Процитировано

8

Advancing energy efficiency: Machine learning based forecasting models for integrated power systems in food processing company DOI Creative Commons
Seray MİRASÇI,

Sara Uygur,

Aslı Aksoy

и другие.

International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 165, С. 110445 - 110445

Опубликована: Янв. 12, 2025

Язык: Английский

Процитировано

1

Ensemble Surrogate Modeling of a Real-Time HVAC Set-Point Optimization Framework for PV Self-Consumption Maximization DOI
Iker Landa del Barrio, María Fernández-Vigil Iglesias, Antonis Peppas

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115478 - 115478

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Islanded micro-grid frequency control based on the optimal-intelligent lyapunov algorithm considering power dynamic and communication uncertainties DOI
Reza Sepehrzad,

Soheyl Nakhaeisharif,

Ahmed Al‐Durra

и другие.

Electric Power Systems Research, Год журнала: 2022, Номер 208, С. 107917 - 107917

Опубликована: Март 16, 2022

Язык: Английский

Процитировано

28

A novel discrete learning-based intelligent methodology for breast cancer classification purposes DOI
Mehdi Khashei, Negar Bakhtiarvand

Artificial Intelligence in Medicine, Год журнала: 2023, Номер 139, С. 102492 - 102492

Опубликована: Янв. 19, 2023

Язык: Английский

Процитировано

10

Leveraging data analytics and ML for enhanced renewable energy resource management DOI

Ankur Pan Saikia,

Kunal Dey,

Amandeep Gill

и другие.

International Journal of Systems Assurance Engineering and Management, Год журнала: 2025, Номер unknown

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Performance influence of auxiliary power batteries on hybrid energy storage system DOI

Binbin Sun,

Bo Li, Fantao Meng

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115719 - 115719

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

0

Predicting Offshore Oil Slick Formation: A Machine Learning Approach Integrating Meteoceanographic Variables DOI Open Access
Simone Carneiro Streitenberger, Estevão Luiz Romão, Fabrício Alves de Almeida

и другие.

Water, Год журнала: 2025, Номер 17(7), С. 939 - 939

Опубликована: Март 24, 2025

The presence of oil slicks in the ocean presents significant environmental and regulatory challenges for offshore processing operations. During primary oil–water separation, produced water is discharged into ocean, carrying residual oil, which measured using total grease (TOG) method. formation spread are influenced by metoceanographic variables, including wind direction (WD), speed (WS), current (CD), (CS), wave (WWD), peak period (PP). In Brazil, limits impose sanctions on companies when exceed 500 m length, making accurate prediction their occurrence extent crucial operators. This study follows three main stages. First, performance five machine learning classification algorithms evaluated, selecting most efficient method based metrics from a Brazilian company’s slick database. Second, best-performing model used to analyze influence variables TOG levels detection probability. Finally, third stage examines detected identify key contributing factors. results enhance decision-support frameworks, improving monitoring mitigation strategies discharges.

Язык: Английский

Процитировано

0