
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Сен. 5, 2024
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Сен. 5, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 219, С. 119636 - 119636
Опубликована: Фев. 2, 2023
Язык: Английский
Процитировано
46Energies, Год журнала: 2024, Номер 17(7), С. 1662 - 1662
Опубликована: Март 30, 2024
Distribution System Operators (DSOs) and Aggregators benefit from novel energy forecasting (EF) approaches. Improved accuracy may make it easier to deal with imbalances between generation consumption. It also helps operations such as Demand Response Management (DRM) in Smart Grid (SG) architectures. For utilities, companies, consumers manage resources effectively educated decisions about consumption, EF is essential. many applications, Energy Load Forecasting (ELF), Generation (EGF), grid stability, accurate crucial. The state of the art examined this literature review, emphasising cutting-edge techniques technologies their significance for industry. gives an overview statistical, Machine Learning (ML)-based, Deep (DL)-based methods ensembles that form basis EF. Various time-series are explored, including sequence-to-sequence, recursive, direct forecasting. Furthermore, evaluation criteria reported, namely, relative absolute metrics Mean Absolute Error (MAE), Root Square (RMSE), Percentage (MAPE), Coefficient Determination (R2), Variation (CVRMSE), well Execution Time (ET), which used gauge prediction accuracy. Finally, overall step-by-step standard methodology often utilised problems presented.
Язык: Английский
Процитировано
35Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108502 - 108502
Опубликована: Апрель 29, 2024
Язык: Английский
Процитировано
26International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 165, С. 110459 - 110459
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
4Applied Energy, Год журнала: 2022, Номер 327, С. 120063 - 120063
Опубликована: Окт. 7, 2022
Язык: Английский
Процитировано
61Computing, Год журнала: 2023, Номер 105(8), С. 1623 - 1645
Опубликована: Фев. 25, 2023
Abstract
Distribution
System
Operators
(DSOs)
and
Aggregators
benefit
from
novel
Energy
Generation
Forecasting
(EGF)
approaches.
Improved
forecasting
accuracy
may
make
it
easier
to
deal
with
energy
imbalances
between
production
consumption.
It
also
aids
operations
such
as
Demand
Response
(DR)
management
in
Smart
Grid
architecture.
This
work
aims
develop
test
a
new
solution
for
EGF.
combines
various
methodologies
running
EGF
tests
on
historical
data
buildings.
The
experimentation
yields
different
resolutions
(15
min,
one
hour,
day,
etc.)
while
reporting
errors.
optimal
technique
should
be
relevant
variety
of
applications
trial-and-error
manner,
utilizing
strategies,
ensemble
approaches,
algorithms.
final
evaluation
incorporates
performance
metrics
coefficient
determination
(
$${R^{2}}$$
Язык: Английский
Процитировано
26Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июнь 14, 2024
Accurate power load forecasting is crucial for the sustainable operation of smart grids. However, complexity and uncertainty load, along with large-scale high-dimensional energy information, present challenges in handling intricate dynamic features long-term dependencies. This paper proposes a computational approach to address these short-term information management, goal accurately predicting future demand. The study introduces hybrid method that combines multiple deep learning models, Gated Recurrent Unit (GRU) employed capture dependencies time series data, while Temporal Convolutional Network (TCN) efficiently learns patterns data. Additionally, attention mechanism incorporated automatically focus on input components most relevant prediction task, further enhancing model performance. According experimental evaluation conducted four public datasets, including GEFCom2014, proposed algorithm outperforms baseline models various metrics such as accuracy, efficiency, stability. Notably, GEFCom2014 dataset, FLOP reduced by over 48.8%, inference shortened more than 46.7%, MAPE improved 39%. significantly enhances reliability, stability, cost-effectiveness grids, which facilitates risk assessment optimization operational planning under context management grid systems.
Язык: Английский
Процитировано
12Electric Power Systems Research, Год журнала: 2022, Номер 214, С. 108830 - 108830
Опубликована: Окт. 10, 2022
Язык: Английский
Процитировано
36Online Social Networks and Media, Год журнала: 2023, Номер 36, С. 100249 - 100249
Опубликована: Май 22, 2023
Язык: Английский
Процитировано
22Knowledge-Based Systems, Год журнала: 2023, Номер 280, С. 111034 - 111034
Опубликована: Сен. 24, 2023
Язык: Английский
Процитировано
20