Polymeric Carbon Nitride for Photocatalytic Overall Water Splitting: Modification Strategies and Recent Advances DOI

Anna Dai,

Zhenxiong Huang, Li Tian

и другие.

Chinese Journal of Structural Chemistry, Год журнала: 2025, Номер unknown, С. 100630 - 100630

Опубликована: Май 1, 2025

Язык: Английский

Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation DOI Open Access
Chunchun Wang,

Ke Rong,

Yan Liu

и другие.

Science China Materials, Год журнала: 2024, Номер 67(2), С. 562 - 572

Опубликована: Янв. 23, 2024

Язык: Английский

Процитировано

143

Rare earth oxide based electrocatalysts: synthesis, properties and applications DOI
Yong Jiang, Hao Fu, Zhong Liang

и другие.

Chemical Society Reviews, Год журнала: 2023, Номер 53(2), С. 714 - 763

Опубликована: Дек. 18, 2023

The synthesis, properties and applications of rare earth oxide based electrocatalysts in electrocatalysis reactions.

Язык: Английский

Процитировано

71

Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities DOI
Eslam G. Al-Sakkari, Ahmed Ragab, Hanane Dagdougui

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 917, С. 170085 - 170085

Опубликована: Янв. 15, 2024

Язык: Английский

Процитировано

40

Machine learning in energy storage material discovery and performance prediction DOI

Guo-Chang Huang,

Fuqiang Huang, Wujie Dong

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 492, С. 152294 - 152294

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

19

Investigating explainable transfer learning for battery lifetime prediction under state transitions DOI Creative Commons

Tianze Lin,

Sihui Chen,

Stephen J. Harris

и другие.

eScience, Год журнала: 2024, Номер 4(5), С. 100280 - 100280

Опубликована: Май 21, 2024

Battery lifetime prediction at early cycles is crucial for researchers and manufacturers to examine product quality promote technology development. Machine learning has been widely utilized construct data-driven solutions high-accuracy predictions. However, the internal mechanisms of batteries are sensitive many factors, such as charging/discharging protocols, manufacturing/storage conditions, usage patterns. These factors will induce state transitions, thereby decreasing accuracy approaches. Transfer a promising technique that overcomes this difficulty achieves accurate predictions by jointly utilizing information from various sources. Hence, we develop two transfer methods, Bayesian Model Fusion Weighted Orthogonal Matching Pursuit, strategically combine prior knowledge with limited target dataset achieve superior performance. From our results, methods reduce root-mean-squared error 41% through adapting domain. Furthermore, strategies identify variations impactful features across different sets therefore disentangle battery degradation root cause transitions perspective data mining. findings suggest proposed in work capable acquiring multiple sources solving specialized issues.

Язык: Английский

Процитировано

12

Insights into Operating Conditions on Electrocatalytic CO2 Reduction DOI Open Access
Zhaozhao Zhu, Wu Tang, Junjie Wang

и другие.

Advanced Energy Materials, Год журнала: 2025, Номер unknown

Опубликована: Фев. 5, 2025

Abstract Electrocatalytic CO 2 reduction (CO RR) is rapidly emerging as a promising sustainable strategy for transforming into valuable fuels and chemical feedstocks, crucial step toward carbon‐neutral society. The efficiency, selectivity, stability of RR are heavily influenced by the chosen catalyst operating conditions used. Despite substantial advances in development catalysts, there scarcity comprehensive reviews focusing on influence different environments performance. This review offers detailed examination internal external environmental control strategies designed to enhance efficiency. fundamental reaction mechanisms through situ operational techniques, paired with theoretical analyses, discussed while also identifying key challenges future research directions technology. By delivering overview current state field, this highlights critical role control, mechanistic insights, practical considerations needed successful commercialization

Язык: Английский

Процитировано

2

Progress in prediction of photocatalytic CO2 reduction using machine learning approach: A mini review DOI
Mir Mohammad Ali, Md. Arif Hossen, Azrina Abd Aziz

и другие.

Next Materials, Год журнала: 2025, Номер 8, С. 100522 - 100522

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

2

Optimization of kitchen wastewater-based microbial fuel cells by machine learning DOI

Ercheng Luo,

Guishi Cheng, Yanchang Liu

и другие.

Journal of Power Sources, Год журнала: 2025, Номер 632, С. 236379 - 236379

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

1

In-situ characterization technologies and theoretical calculations in carbon dioxide reduction: In-depth understanding of reaction mechanisms and rational design of electrocatalysts DOI
Rutao Wang, Xiaokun Yang, Jianpeng Zhang

и другие.

Coordination Chemistry Reviews, Год журнала: 2025, Номер 533, С. 216541 - 216541

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

1

Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis DOI Creative Commons
Feng Li, Huan Yu, Baocai Zhang

и другие.

Advanced Science, Год журнала: 2024, Номер unknown

Опубликована: Сен. 5, 2024

Abstract To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division model EAM Shewanella oneidensis ( S. ) MR‐1 is engineered by reducing formation divisome. Specially, blocking translation proteins via anti‐sense RNAs or expressing inhibitors, cellular length and output power density are all increased. Electrophysiological transcriptomic results synergistically reveal that programmed reinforces EET enhancing NADH oxidation, inner‐membrane quinone pool, abundance c ‐type cytochromes. Moreover, enhances hydrophobicity due to decreased cell‐surface polysaccharide, thus facilitates initial surface adhesion stage during biofilm formation. The current increase in positive correction with length. However, inhibition reduces growth, which then restored quorum sensing‐based dynamic regulation growth phases. QS‐regulated elongated strain enables a 143.6 ± 40.3 µm (72.6‐fold MR‐1), an 248.0 10.6 mW m −2 (3.41‐fold MR‐1) exhibits superior potential for pollutant treatment. Engineering paves innovate avenue EAMs.

Язык: Английский

Процитировано

6