Stability assessment of CAES salt cavern using a fractal-order derivative creep-fatigue damage model DOI
Hang Li, Hongling Ma, Wei Liang

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 134584 - 134584

Опубликована: Янв. 1, 2025

Язык: Английский

State-of-the-art hydrogen generation techniques and storage methods: A critical review DOI

Dan Tang,

Guanglei Tan, Guowei Li

и другие.

Journal of Energy Storage, Год журнала: 2023, Номер 64, С. 107196 - 107196

Опубликована: Март 27, 2023

Язык: Английский

Процитировано

172

Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis DOI
Călin-Cristian Cormoş

Energy, Год журнала: 2023, Номер 270, С. 126926 - 126926

Опубликована: Фев. 9, 2023

Язык: Английский

Процитировано

78

Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews DOI
Stanislav A. Baratov, Elena Filonova, Anastasiya Ivanova

и другие.

Journal of Energy Chemistry, Год журнала: 2024, Номер 94, С. 302 - 331

Опубликована: Март 8, 2024

Язык: Английский

Процитировано

62

Optimizing renewable energy systems through artificial intelligence: Review and future prospects DOI Creative Commons
Kingsley Ukoba, Kehinde O. Olatunji,

Eyitayo Adeoye

и другие.

Energy & Environment, Год журнала: 2024, Номер 35(7), С. 3833 - 3879

Опубликована: Май 22, 2024

The global transition toward sustainable energy sources has prompted a surge in the integration of renewable systems (RES) into existing power grids. To improve efficiency, reliability, and economic viability these systems, synergistic application artificial intelligence (AI) methods emerged as promising avenue. This study presents comprehensive review current state research at intersection AI, highlighting key methodologies, challenges, achievements. It covers spectrum AI utilizations optimizing different facets RES, including resource assessment, forecasting, system monitoring, control strategies, grid integration. Machine learning algorithms, neural networks, optimization techniques are explored for their role complex data sets, enhancing predictive capabilities, dynamically adapting RES. Furthermore, discusses challenges faced implementation such variability, model interpretability, real-time adaptability. potential benefits overcoming include increased yield, reduced operational costs, improved stability. concludes with an exploration prospects emerging trends field. Anticipated advancements explainable reinforcement learning, edge computing, discussed context impact on Additionally, paper envisions AI-driven solutions smart grids, decentralized development autonomous management systems. investigation provides important insights landscape applications

Язык: Английский

Процитировано

62

Floating photocatalysts as promising materials for environmental detoxification and energy production: A review DOI

Fatemeh Seifikar,

Aziz Habibi‐Yangjeh

Chemosphere, Год журнала: 2024, Номер 355, С. 141686 - 141686

Опубликована: Март 19, 2024

Язык: Английский

Процитировано

61

Towards a carbon-neutral community: Integrated renewable energy systems (IRES)–sources, storage, optimization, challenges, strategies and opportunities DOI
Yi‐An Zhu,

Siqi Wu,

Jiayi Li

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 83, С. 110663 - 110663

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

56

Enhancement strategies in CO2 conversion and management of biochar supported photocatalyst for effective generation of renewable and sustainable solar energy DOI
Soheil Mohtaram,

Mohammad Sina Mohtaram,

Samad Sabbaghi

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 300, С. 117987 - 117987

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

54

Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects DOI
Van Nhanh Nguyen, W. Tarełko, Prabhakar Sharma

и другие.

Energy & Fuels, Год журнала: 2024, Номер 38(3), С. 1692 - 1712

Опубликована: Янв. 19, 2024

Modern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimization and model prediction. The effective utilization ML the development scaling up systems needs a high degree accountability. However, most approaches currently use termed black box since their work is difficult to comprehend. Explainable artificial intelligence (XAI) an attractive option solve issue poor interoperability black-box methods. This review investigates relationship between (RE) XAI. It emphasizes potential advantages XAI improving performance efficacy RE systems. realized that although integration with has enormous alter how produced consumed, possible hazards barriers remain be overcome, particularly concerning transparency, accountability, fairness. Thus, extensive research required address societal ethical implications using create standardized data sets evaluation metrics. In summary, this paper shows potential, perspectives, opportunities, challenges application system management operation aiming target efficient energy-use goals more sustainable trustworthy future.

Язык: Английский

Процитировано

53

Analyzing the load capacity curve hypothesis for the Turkiye: A perspective for the sustainable environment DOI
Abdullah Emre Çağlar, Mehmet Akif Destek, Müge Manga

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141232 - 141232

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

41

Algorithmic green infrastructure optimisation: Review of artificial intelligence driven approaches for tackling climate change DOI Creative Commons
Abdulrazzaq Shaamala, Tan Yiğitcanlar, Alireza Nili

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 101, С. 105182 - 105182

Опубликована: Янв. 7, 2024

Green infrastructure (GI) is a fundamental building block of our cities. It contributes to the sustainability and vitality cities by offering various benefits such as greening, cooling, water, air quality, managing carbon emissions. GI plays an essential role in enhancing overall well-being. The utilisation artificial intelligence (AI) technologies for optimisation perceived powerful approach A knowledge gap, nevertheless, remains research on AI-driven tackling climate change. This study aims consolidate comprehension optimisation, particularly methodology adopts PRISMA protocol perform systematic literature review. review results are analysed from six aspects—i.e., objectives, objectives categories, indicators, models, types, scales. findings revealed: (a) was mainly undertaken areas biodiversity ecosystem security, energy efficiency, public health, heat islands, water management; (b) Indicator categories were concentrated indicators related GI, objective, other general/supporting indicators. Based these findings, framework developed enhance understanding process within realm

Язык: Английский

Процитировано

37