Energy, Год журнала: 2025, Номер unknown, С. 134584 - 134584
Опубликована: Янв. 1, 2025
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 134584 - 134584
Опубликована: Янв. 1, 2025
Язык: Английский
Journal of Energy Storage, Год журнала: 2023, Номер 64, С. 107196 - 107196
Опубликована: Март 27, 2023
Язык: Английский
Процитировано
172Energy, Год журнала: 2023, Номер 270, С. 126926 - 126926
Опубликована: Фев. 9, 2023
Язык: Английский
Процитировано
78Journal of Energy Chemistry, Год журнала: 2024, Номер 94, С. 302 - 331
Опубликована: Март 8, 2024
Язык: Английский
Процитировано
62Energy & Environment, Год журнала: 2024, Номер 35(7), С. 3833 - 3879
Опубликована: Май 22, 2024
The global transition toward sustainable energy sources has prompted a surge in the integration of renewable systems (RES) into existing power grids. To improve efficiency, reliability, and economic viability these systems, synergistic application artificial intelligence (AI) methods emerged as promising avenue. This study presents comprehensive review current state research at intersection AI, highlighting key methodologies, challenges, achievements. It covers spectrum AI utilizations optimizing different facets RES, including resource assessment, forecasting, system monitoring, control strategies, grid integration. Machine learning algorithms, neural networks, optimization techniques are explored for their role complex data sets, enhancing predictive capabilities, dynamically adapting RES. Furthermore, discusses challenges faced implementation such variability, model interpretability, real-time adaptability. potential benefits overcoming include increased yield, reduced operational costs, improved stability. concludes with an exploration prospects emerging trends field. Anticipated advancements explainable reinforcement learning, edge computing, discussed context impact on Additionally, paper envisions AI-driven solutions smart grids, decentralized development autonomous management systems. investigation provides important insights landscape applications
Язык: Английский
Процитировано
62Chemosphere, Год журнала: 2024, Номер 355, С. 141686 - 141686
Опубликована: Март 19, 2024
Язык: Английский
Процитировано
61Journal of Energy Storage, Год журнала: 2024, Номер 83, С. 110663 - 110663
Опубликована: Фев. 2, 2024
Язык: Английский
Процитировано
56Energy Conversion and Management, Год журнала: 2024, Номер 300, С. 117987 - 117987
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
54Energy & Fuels, Год журнала: 2024, Номер 38(3), С. 1692 - 1712
Опубликована: Янв. 19, 2024
Modern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimization and model prediction. The effective utilization ML the development scaling up systems needs a high degree accountability. However, most approaches currently use termed black box since their work is difficult to comprehend. Explainable artificial intelligence (XAI) an attractive option solve issue poor interoperability black-box methods. This review investigates relationship between (RE) XAI. It emphasizes potential advantages XAI improving performance efficacy RE systems. realized that although integration with has enormous alter how produced consumed, possible hazards barriers remain be overcome, particularly concerning transparency, accountability, fairness. Thus, extensive research required address societal ethical implications using create standardized data sets evaluation metrics. In summary, this paper shows potential, perspectives, opportunities, challenges application system management operation aiming target efficient energy-use goals more sustainable trustworthy future.
Язык: Английский
Процитировано
53Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141232 - 141232
Опубликована: Фев. 15, 2024
Язык: Английский
Процитировано
41Sustainable Cities and Society, Год журнала: 2024, Номер 101, С. 105182 - 105182
Опубликована: Янв. 7, 2024
Green infrastructure (GI) is a fundamental building block of our cities. It contributes to the sustainability and vitality cities by offering various benefits such as greening, cooling, water, air quality, managing carbon emissions. GI plays an essential role in enhancing overall well-being. The utilisation artificial intelligence (AI) technologies for optimisation perceived powerful approach A knowledge gap, nevertheless, remains research on AI-driven tackling climate change. This study aims consolidate comprehension optimisation, particularly methodology adopts PRISMA protocol perform systematic literature review. review results are analysed from six aspects—i.e., objectives, objectives categories, indicators, models, types, scales. findings revealed: (a) was mainly undertaken areas biodiversity ecosystem security, energy efficiency, public health, heat islands, water management; (b) Indicator categories were concentrated indicators related GI, objective, other general/supporting indicators. Based these findings, framework developed enhance understanding process within realm
Язык: Английский
Процитировано
37