Various Techniques for Charging Lithium-Ion Batteries in Electric Vehicles Using Wireless Power Transfer Chargers DOI Creative Commons

Marouane El Ancary,

Abdellah Lassioui, Hassan El Fadil

и другие.

E3S Web of Conferences, Год журнала: 2025, Номер 601, С. 00057 - 00057

Опубликована: Янв. 1, 2025

Precise voltage and current regulation is essential to ensure the required power output maximum efficiency in charging stations, particularly those utilizing Wireless Power Transfer (WPT) systems. Effective techniques are necessary manage Battery Electric Vehicles (BEVs) operating under various modes. This study outlines controller design for different methods lithium-ion batteries a WPT charger. Initially, fundamental concepts of systems their equivalent circuit introduced. Subsequently, control strategy detailed Constant Current (CC) mode, Multi-stage Method (MCM), Pulse Charging (PCM). Finally, resilience validity this innovative approach controlling demonstrated through simulations.

Язык: Английский

Global Strategies for a Low-Carbon Future: Lessons from the US, China, and EU's Pursuit of Carbon Neutrality DOI
Solomon Evro, Babalola Aisosa Oni, Olusegun Stanley Tomomewo

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 461, С. 142635 - 142635

Опубликована: Май 20, 2024

Язык: Английский

Процитировано

46

Assessing policy influence on electric vehicle adoption in China: An in-depth study DOI Creative Commons
Farheen Ehsan, Salman Habib, Muhammad Majid Gulzar

и другие.

Energy Strategy Reviews, Год журнала: 2024, Номер 54, С. 101471 - 101471

Опубликована: Июнь 29, 2024

Electrification of transport industry in China presents several new prospects to fulfil requirements, which are necessary encounter increasing issues energy security, air quality, and lower the dependence on fossil fuels. The Chinese government is paying significant attention EV market penetration consumer adoption through numerous demonstration programs/plans with attractive transportation policies. In this study, key factors included barriers policies comprehensively reviewed, can enhance intention adopt EVs. This research study extensively demonstrates positive impact two distinguished types including financial preferential consumer's EVs by implementing an extended improved version Theory Planned behavior (TPB). A case Shanghai performed survey 314 respondents, further evaluated structural equation modelling (SEM) assess aspects adoption. particular, construct items TPB attitude, subjective norm (SN), perceived behavioral control (PBC) investigated detail present their joint purchasing consumers. confirmatory factor analysis (CFA) AMOS for assessment findings. findings from reveal that have a considerable towards shaping attitude consumers significantly related However, Shanghainese, more positively associated purchase comparison Consequently, playing crucial role controlling China. principal policy suggestions various provide multifaceted perceptions stakeholders envision electrified transportation.

Язык: Английский

Процитировано

22

Moving towards a circular economy: A systematic review of barriers to electric vehicle battery recycling DOI
Jianghong Feng, Wenjing Liu, Feng Chen

и другие.

Sustainable Production and Consumption, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

7

Biopolymers: An inclusive review DOI Creative Commons
Great Iruoghene Edo, Winifred Ndudi,

Ali B. M. Ali

и другие.

Hybrid Advances, Год журнала: 2025, Номер unknown, С. 100418 - 100418

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

5

A review of energy storage systems for facilitating large-scale EV charger integration in electric power grid DOI
Doğan Çeli̇k, Muhammad Adnan Khan, Nima Khosravi

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 112, С. 115496 - 115496

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

3

Exploiting Artificial Neural Networks for the State of Charge Estimation in EV/HV Battery Systems: A Review DOI Creative Commons
Pierpaolo Dini,

Davide Paolini

Batteries, Год журнала: 2025, Номер 11(3), С. 107 - 107

Опубликована: Март 13, 2025

Artificial Neural Networks (ANNs) improve battery management in electric vehicles (EVs) by enhancing the safety, durability, and reliability of electrochemical batteries, particularly through improvements State Charge (SOC) estimation. EV batteries operate under demanding conditions, which can affect performance and, extreme cases, lead to critical failures such as thermal runaway—an exothermic chain reaction that may result overheating, fires, even explosions. Addressing these risks requires advanced diagnostic strategies, machine learning presents a powerful solution due its ability adapt across multiple facets management. The versatility ML enables application material discovery, model development, quality control, real-time monitoring, charge optimization, fault detection, positioning it an essential technology for modern systems. Specifically, ANN models excel at detecting subtle, complex patterns reflect health performance, crucial accurate SOC effectiveness applications this domain, however, is highly dependent on selection datasets, relevant features, suitable algorithms. Advanced techniques active are being explored enhance improving models’ responsiveness diverse nuanced behavior. This compact survey consolidates recent advances estimation, analyzing current state field highlighting challenges opportunities remain. By structuring insights from extensive literature, paper aims establish ANNs foundational tool next-generation systems, ultimately supporting safer more efficient EVs robust safety protocols. Future research directions include refining dataset quality, optimizing algorithm selection, precision, thereby broadening ANNs’ role ensuring reliable vehicles.

Язык: Английский

Процитировано

3

Dynamic Charging Optimization Algorithm for Electric Vehicles to Mitigate Grid Power Peaks DOI Creative Commons
Alain Aoun, Mehdi Adda, Adrian Ilinca

и другие.

World Electric Vehicle Journal, Год журнала: 2024, Номер 15(7), С. 324 - 324

Опубликована: Июль 21, 2024

The rapid proliferation of electric vehicles (EVs) presents both opportunities and challenges for the electrical grid. While EVs offer a promising avenue reducing greenhouse gas emissions dependence on fossil fuels, their uncoordinated charging behavior can strain grid infrastructure, thus creating new operators EV owners equally. nature vehicle may lead to emergence peak loads. Grid typically plan demand periods deploy resources accordingly ensure stability. Uncoordinated introduce unpredictability variability into load patterns, making it more challenging manage loads effectively. This paper examines implications address this challenge proposes novel dynamic optimization algorithm tailored schedules efficiently, mitigating power peaks while ensuring user satisfaction requirements. proposed “Proof Need” (PoN) aims schedule based collected data such as state charge (SoC) EV’s battery, charger power, number connected per household, end-user’s preferences, local distribution substation’s capacity. PoN calculates priority index each coordinates all at times in way that does not exceed maximum allocated was tested under different scenarios, results comparison between an baseline scenario coordinated model, proving efficiency our algorithm, by 40.8% with no impact overall total time.

Язык: Английский

Процитировано

10

Exploring structural basis of photovoltaic dye materials to tune power conversion efficiencies: a DFT and ML analysis of Violanthrone DOI
Sajjad Hussain Sumrra, Cihat Güleryüz,

Abrar U. Hassan

и другие.

Materials Chemistry and Physics, Год журнала: 2024, Номер unknown, С. 130196 - 130196

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

10

Return on values of hydrogen energy transitions: A perspective on the conceptual framework DOI
M. A. Hannan, Mahendhiran.S. Nair,

Pervaiz K. Ahmed

и другие.

Technology in Society, Год журнала: 2025, Номер unknown, С. 102821 - 102821

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

An exploratory Study on Intelligent Active Cell Balancing of Electric Vehicle Battery Management and Performance Using Machine Learning Algorithms DOI Creative Commons

V. Srinivasa Rao,

Guna Sekhar Sajja, Vishwaraj B Manur

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104524 - 104524

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2