Journal of Energy Storage, Год журнала: 2024, Номер 103, С. 114167 - 114167
Опубликована: Окт. 25, 2024
Язык: Английский
Journal of Energy Storage, Год журнала: 2024, Номер 103, С. 114167 - 114167
Опубликована: Окт. 25, 2024
Язык: Английский
Science Progress, Год журнала: 2024, Номер 107(2)
Опубликована: Апрель 1, 2024
Smart building equipment monitoring is a well-established field focused on enhancing contemporary comfort. The proliferation of Internet connectivity, facilitated by the internet things (IoT), has transformed buildings from static structures into interactive environments. IoT witnessed substantial growth across various aspects daily life, environmental conditions to managing systems and storing data in cloud. One critical application intelligent control equipment, such as air conditioners, optimize energy efficiency-a matter increasing concern for owners, design experts, system integrators. Achieving comprehensive savings demands meticulous approach energy-efficient control. This paper's primary objective explore analyze IoT-based energy-saving optimization techniques integrating information modeling (BIM) technology. It particularly delves conservation algorithm air-conditioning systems. research presents challenge rooted optimization, established upon specific functions, followed detailed explanation algorithm. To validate their approach, paper outlines experimental design. Over three sessions August, they conducted experiments two distinct areas. Area 1 implemented methodology discussed paper, utilizing virtual parameter enhancement mechanisms, while 2 adhered conventional methods. results were enlightening. demonstrated superior efficiency, consuming 735 kWh compared 2's 819 kWh, signifying an impressive 11.43% reduction consumption thanks optimized strategy. underscores practicality significance implementing strategies, with focus smart thermostats, HVAC controllers, daylight sensors, management achieve gains.
Язык: Английский
Процитировано
2IEEE Transactions on Artificial Intelligence, Год журнала: 2024, Номер 5(10), С. 4868 - 4883
Опубликована: Июнь 20, 2024
Язык: Английский
Процитировано
2Опубликована: Март 6, 2023
Recently, the forecasting of energy consumption has prompted a massive escalation in research studies that are being conducted all over world an effort to attain higher levels sustainability. Forecasting is essential decision-making for effective conservation and development within organization. The adoption data-driven models seen tremendous growth past few decades as result improvements performance, robustness, simplicity deployment brought about by these improvements. There various kinds models, but Artificial Neural Networks (ANN) currently among most widely used methods have been applied real-world situations. This study provides comprehensive overview on ANN comparison with other evaluation metrics were employed evaluate performances each technique. review helps outline potential future area building prediction prominence existing gaps.
Язык: Английский
Процитировано
4Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 110732 - 110732
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
1Journal of Energy Storage, Год журнала: 2024, Номер 103, С. 114167 - 114167
Опубликована: Окт. 25, 2024
Язык: Английский
Процитировано
1