Machine Learning Orchestrating the Materials Discovery and Performance Optimization of Redox Flow Battery DOI Creative Commons
Lina Tang, Puiki Leung, Qian Xu

и другие.

ChemElectroChem, Год журнала: 2024, Номер unknown

Опубликована: Июнь 10, 2024

Abstract This review exploits the crucial role of computational methods in discovering and optimizing materials for redox flow batteries (RFBs). Integration high‐throughput screening (HTCS) machine learning (ML) accelerates discovery, guided by algorithms categorizing RFBs. A collaborative exploration, spanning macroscopic to mesoscopic scales, combines quantum with reinforcement learning, transfer time series analysis, Bayesian optimization, active various generative models. The integration ML techniques experimental methods, anchored experimentally validated Density Functional Theory (DFT) calculations molecular dynamics (MD) simulations, proves indispensable cost‐effective Data collection feature engineering are explored, emphasizing optimization goals precise data within framework. Feature analysis importance is highlighted, utilizing such as filter, embedded, wrapper deep efficient energy exploration. Computational perspectives on features operating conditions encompass membrane characteristics, fluid dynamics, temperature dependence pressure sensitivity. Time‐dependent ML‐generated insights understanding cycling performance intricacies, providing a comprehensive RFB materials.

Язык: Английский

A guided review of machine learning in the design and application for pore nanoarchitectonics of carbon materials DOI
Chuang Wang, Xingxing Cheng, Kai Luo

и другие.

Materials Science and Engineering R Reports, Год журнала: 2025, Номер 165, С. 101010 - 101010

Опубликована: Май 3, 2025

Язык: Английский

Процитировано

1

Fabrication of an asymmetric supercapacitor using a novel electrode design and introduce a robust machine learning model for its performance evaluation DOI
Samaneh Mahmoudi Qashqay, Mohammad‐Reza Zamani‐Meymian, Ali Maleki

и другие.

Journal of Power Sources, Год журнала: 2024, Номер 613, С. 234911 - 234911

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

8

Research on specific capacitance prediction of biomass carbon-based supercapacitors based on machine learning DOI
Chenxi Zhao, Xueying Lu,

Huanyu Tu

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 97, С. 112974 - 112974

Опубликована: Июль 16, 2024

Язык: Английский

Процитировано

8

Insights into the specific capacitance of CNT-based supercapacitor electrodes using artificial intelligence DOI Creative Commons
Wael Z. Tawfik, Mohamed Shaban, Athira Raveendran

и другие.

RSC Advances, Год журнала: 2025, Номер 15(5), С. 3155 - 3167

Опубликована: Янв. 1, 2025

This study uses various ML algorithms, including artificial neural networks, random forest, k -nearest neighbors, and decision tree, based on experimental studies to predict the specific capacitance characteristics of CNT-based SC electrodes.

Язык: Английский

Процитировано

1

Research on prediction of energy density and power density of biomass carbon-based supercapacitors based on machine learning DOI
Xueying Lu, Chenxi Zhao,

Huanyu Tu

и другие.

Sustainable materials and technologies, Год журнала: 2025, Номер unknown, С. e01309 - e01309

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Deep learning prediction and experimental investigation of specific capacitance of nitrogen-doped porous biochar DOI
Xiaorui Liu, Haiping Yang,

Tang Yuanjun

и другие.

Bioresource Technology, Год журнала: 2024, Номер 403, С. 130865 - 130865

Опубликована: Май 25, 2024

Язык: Английский

Процитировано

6

AI-based approach for predicting the storage performance of zinc oxide-based supercapacitor electrodes DOI
Mostafa A. Ebied, Mohamed Mostafa A. Azim,

Ahmed Emad-Eldeen

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 94, С. 112292 - 112292

Опубликована: Июнь 11, 2024

Язык: Английский

Процитировано

6

Sustainable graphitic carbon derived from oil palm frond biomass for supercapacitor application: Effect of redox additive and artificial neural network‑based modeling approach DOI
Mohammad Ullah, Md Munirul Hasan, Rasidi Roslan

и другие.

Journal of Electroanalytical Chemistry, Год журнала: 2024, Номер 971, С. 118570 - 118570

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

5

Recent advances and future prospects of MXene-based photocatalysts in environmental remediations. DOI
Basiru O. Yusuf, Mustapha Umar, Mansur Aliyu

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(6), С. 114812 - 114812

Опубликована: Ноя. 14, 2024

Язык: Английский

Процитировано

5

Machine learning models for capacitance prediction of porous carbon-based supercapacitor electrodes DOI
Wael Z. Tawfik,

Samar N. Mohammad,

Kamel H. Rahouma

и другие.

Physica Scripta, Год журнала: 2023, Номер 99(2), С. 026001 - 026001

Опубликована: Дек. 27, 2023

Abstract Energy storage devices and systems with better performance, higher reliability, longer life, wiser management strategies are needed for daily technology advancement. Among these devices, the supercapacitor is most preferable due to its high-limit capacitance that esteems more than different capacitors. Today, it considered a significant challenge design high-performance materials supercapacitors by exploring interaction between characteristics structural features of materials. Because this, essential predict when assessing material’s potential use in constructing supercapacitor-electrode applications. Machine learning (ML) can significantly speed up computation, capture complex mechanisms enhance accuracy prediction make best choices based on detailed status data. We aimed develop new strategy assisted applying ML analyze relationship porous carbon (PCMs) using hundreds experimental data literature. In present study, Linear Regression (LR), Tree (RT), Adaptive Neuro-Fuzzy Inference System (ANFIS) were used estimate supercapacitor’s capacitance. The effectiveness models was evaluated terms root mean square error (RMSE), absolute (MAE), correlation expected yield system-provided yield. developed ANFIS model, RMSE, MAE, R values 22.8, 39.7647, 0.90004, respectively, compares favourably regarding performance other built this purpose.

Язык: Английский

Процитировано

10