Efficient Energy Management for Grid-Connected PV and EV Charging Stations with HES System Using Fuzzy Logic-Based MPPT Control DOI
Naresh Boda, Prashant Tiwari

Опубликована: Июнь 21, 2024

Язык: Английский

Advances in Sand Cat Swarm Optimization: A Comprehensive Study DOI

Ferzat Anka,

Nazim Aghayev

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Янв. 3, 2025

Язык: Английский

Процитировано

5

Optimal Sizing and Energy Management of Electric Vehicle Hybrid Energy Storage Systems With Multi-Objective Optimization Criterion DOI
Som Ankar,

Pinkymol K. P

IEEE Transactions on Vehicular Technology, Год журнала: 2024, Номер 73(8), С. 11082 - 11096

Опубликована: Март 1, 2024

Electric vehicles (EVs) experience rapid battery degradation due to high peak power during acceleration and deceleration, followed by subsequent charging discharging cycles urban drive. To meet the high-power demands mitigate degradation, EVs are equipped with larger-sized energy storage systems (ESS) results in increasing their cost reducing overall efficiency. Battery supercapacitor (SC) powered hybrid ESS (HESS), offers an appealing solution overcome limitations of standalone (BESS). Real-time sharing among sources HESS achieve satisfactory mileage cycle life is a significant challenge when optimizing management dimensioning HESS. However, these problems, integrated optimization approach proposed using non-dominated sorting genetic algorithm III (NSGA-III) fuzzy logic-based control (FLC) strategy. In process deriving optimal configuration for HESS, capacity identified based on required minimum range. Moreover, arrangement SC module derived minimizing loss, mass, financial over vehicle lifetime. comparison (HP) BESS, optimized governed EM technique can prolong battery's 72.8% 76.38%, as well remarkable reductions cost-to-range ratio up 37.5% 42.14% following standard US06 Urban Dynamometer Driving Schedule (UDDS) routes, respectively. Involvement resulted substantial 34.3% reduction mass compared HP BESS. This study further demonstrates that appropriately tuned fuzzy-logic method, which be seamlessly into realtime, exhibits superior performance basic rule-based

Язык: Английский

Процитировано

10

Storage solutions for renewable energy: A Review DOI Creative Commons

Eduard Enasel,

Gheorghe Dumitraşcu

Energy Nexus, Год журнала: 2025, Номер unknown, С. 100391 - 100391

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Probabilistic prediction-based multi-objective optimization approach for multi-energy virtual power plant DOI Creative Commons
Gangqiang Li, Rongquan Zhang, Siqi Bu

и другие.

International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 161, С. 110200 - 110200

Опубликована: Авг. 28, 2024

Язык: Английский

Процитировано

7

Innovative optimization of hybrid energy storage systems for electric vehicles: Integrating FBPINN-SAO to enhance performance and efficiency DOI

P. Aruna,

V. Vasan Prabhu,

V. Krishnakumar

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 115021 - 115021

Опубликована: Дек. 19, 2024

Язык: Английский

Процитировано

6

Optimizing energy management in electric vehicles with hybrid battery systems using the GTOA-DRCNN method DOI

K. V. Kandaswamy,

V. Rengarajan,

Bhavana Narain

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 100, С. 113352 - 113352

Опубликована: Сен. 18, 2024

Язык: Английский

Процитировано

5

An intelligent approach for cascaded multi-level inverter (CMLI) with grid-connected hybrid system DOI

T. Porselvi,

P. Rajesh, Francis H. Shajin

и другие.

Environment Development and Sustainability, Год журнала: 2024, Номер unknown

Опубликована: Янв. 26, 2024

Язык: Английский

Процитировано

3

A soft actor-critic reinforcement learning framework for optimal energy management in electric vehicles with hybrid storage DOI
Yahia Mazzi, Hicham Ben Sassi, Fatima Errahimi

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 99, С. 113344 - 113344

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

3

Optimized control of hybrid energy storage systems for electric vehicles using BWPOA-MFPIDNN approach DOI

Chandrasekar Shanmugam,

Senthilnathan Nattuthurai, Sabarimuthu Muthusamy

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 104, С. 114317 - 114317

Опубликована: Ноя. 26, 2024

Язык: Английский

Процитировано

3

Effective sizing and optimization of hybrid renewable energy sources for micro distributed generation system DOI Creative Commons

Shanmuganatha Vadivel Kasi,

Narottam Das, Sanath Alahakoon

и другие.

IET Renewable Power Generation, Год журнала: 2025, Номер 19(1)

Опубликована: Янв. 1, 2025

Abstract Renewable energy sources (RES) are vital for addressing fossil fuel challenges and promoting environmental sustainability by reducing air pollution. Hybrid RES (HRES) in microgrids (MGs) enhance efficiency reliability but face issues like management, load demand, efficiency. Existing research on HRES MGs often lacks efficiency, reliability, accuracy. This model proposes a solution using ant lion colony optimization with particle swarm (ALCO‐PSO) Maximum Power Point Tracking (MPPT) to improve power The (ACO) algorithm offers higher better global search, suffers from limitations such as computational complexity premature convergence. (LOA) addresses these issues, enhancing the algorithm's robustness. However, ALCO faces limited scalability search ability, which overcome integrating (PSO). Additionally, direct current (DC) fault detection is enhanced an artificial neural network (ANN) solar data. model's performance evaluated power, voltage, quality metrics, achieving 99.56% accuracy, faster convergence (0.11 s), oscillation around 4.25 W, tracking time of 0.2 s, interruptible 0.009%, cost (COE) 0.0413%, penalty 0.94 $/kWh.

Язык: Английский

Процитировано

0