Short-term natural gas load forecasting based on EL-VMD-Transformer-ResLSTM DOI Creative Commons

Mingzhi Zhao,

Guangrong Guo,

Lijun Fan

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Сен. 2, 2024

Due to changes in urban residents' consumption habits and lifestyles, accurately predicting natural gas has become increasingly important. To address this issue, paper proposes a forecasting model that combines Ensemble Learning (EL), Variational Mode Decomposition (VMD), Transformer, LSTM. First, XGBoost, CatBoost, LightGBM are used as base learners the ensemble learning framework, with predictions generated by integrated into original dataset. Next, VMD method is employed decompose load sequence several intrinsic mode functions (IMFs), effectively extracting inherent features of sequence. Finally, data input Transformer-ResLSTM network for prediction. This replaces Transformer decoder structure an LSTM fully connected layers, creating new structure. Additionally, residual connection mechanism introduced both encoder Experimental results show that, compared traditional models such ARIMA, GRU, LSTM, proposed hybrid significantly improves prediction accuracy, reducing MSE 92–98% MAE 74–83%. In summary, demonstrates significant potential practical value enhancing accuracy forecasting.

Язык: Английский

Comparison of LSTM and SVM methods through wavelet decomposition in drought forecasting DOI
Türker Tuğrul, Mehmet Ali Hınıs, Sertaç Oruç

и другие.

Earth Science Informatics, Год журнала: 2025, Номер 18(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

4

Enhancing prediction of dissolved oxygen over Santa Margarita River: Long short-term memory incorporated with multi-objective observer-teacher-learner optimization DOI
Siyamak Doroudi, Yusef Kheyruri, Ahmad Sharafati

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 106969 - 106969

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

3

Optimal scheduling of wind-photovoltaic-hydrogen system with alkaline and proton exchange membrane electrolyzer DOI
Bo Yang, Zijian Zhang,

Shi Su

и другие.

Journal of Power Sources, Год журнала: 2024, Номер 614, С. 235010 - 235010

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

12

SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting DOI Creative Commons
Wenchuan Wang, M. H. Gu,

Yang-hao Hong

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Окт. 9, 2024

Accurate runoff forecasting is of great significance for water resource allocation flood control and disaster reduction. However, due to the inherent strong randomness sequences, this task faces significant challenges. To address challenge, study proposes a new SMGformer forecast model. The model integrates Seasonal Trend decomposition using Loess (STL), Informer's Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), Multi-head self-attention (MHSA). Firstly, in response nonlinear non-stationary characteristics sequence, STL used extract sequence's trend, period, residual terms, multi-feature set based on 'sequence-sequence' constructed as input model, providing foundation subsequent models capture evolution runoff. key features are then captured layer. Next, BiGRU layer learn temporal information these features. further optimize output MHSA mechanism introduced emphasize impact important information. Finally, accurate achieved by transforming through Fully connected verify effectiveness proposed monthly data from two hydrological stations China selected, eight compare performance results show that compared with Informer 1th step MAE decreases 42.2% 36.6%, respectively; RMSE 37.9% 43.6% NSE increases 0.936 0.975 0.487 0.837, respectively. In addition, KGE at 3th 0.960 0.805, both which can maintain above 0.8. Therefore, accurately sequence extend effective period

Язык: Английский

Процитировано

10

Stability and safety study of pumped storage units based on time-shifted multi-scale cosine similarity entropy DOI
Xiang Li,

Yakun Guo,

Boyi Xiao

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 95, С. 112611 - 112611

Опубликована: Июнь 25, 2024

Язык: Английский

Процитировано

8

High-precision air conditioning load forecasting model based on improved sparrow search algorithm DOI
Xinyu Yang, Guofeng Zhou, Zhongjun Ren

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 92, С. 109809 - 109809

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

6

Jidoka-DT simulator programmed by hybridize XGboost-LSTM to evaluate helmets quality produced by rice-straw-alumina plastic dough to resist shocks and impenetrable DOI Creative Commons
Ahmed M. Abed, Ahmed Fathy, Radwa A. El Behairy

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104104 - 104104

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model DOI Open Access
Wenbo Zhao, Ling Fan

Sustainability, Год журнала: 2024, Номер 16(6), С. 2522 - 2522

Опубликована: Март 19, 2024

Accurately predicting the cold load of industrial buildings is a crucial step in establishing an energy consumption management system for constructions, which plays significant role advancing sustainable development. However, due to diverse influencing factors and complex nonlinear patterns exhibited by data buildings, these loads poses challenges. This study proposes hybrid prediction approach combining Improved Snake Optimization Algorithm (ISOA), Variational Mode Decomposition (VMD), random forest (RF), BiLSTM-attention. Initially, ISOA optimizes parameters VMD method, obtaining best decomposition results data. Subsequently, RF employed predict components with higher frequencies, while BiLSTM-attention utilized lower frequencies. The final are obtained predictions. proposed method validated using actual from building, experimental demonstrate its excellent predictive performance, making it more suitable constructions compared traditional methods. By enhancing accuracy not only improves efficiency but also promotes reduction carbon emissions, thus contributing development sector.

Язык: Английский

Процитировано

3

A health assessment method fused fuzzy Kalman sliding window for servo motor systems DOI

Xuelin Du,

Zhiyong Liu

Measurement, Год журнала: 2025, Номер unknown, С. 116955 - 116955

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Springback active prediction-compensation framework: difficult-to-manufacturing metal tubes intelligent bending based on alert collaborative sand cat swarm algorithm DOI

Zheyi Li,

Zili Wang, Shuyou Zhang

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0